Random Regular Graphs of Non-Constant Degree: Connectivity and Hamiltonicity
暂无分享,去创建一个
[1] Béla Bollobás,et al. Random Graphs , 1985 .
[2] Alan M. Frieze,et al. On the independence and chromatic numbers of random regular graphs , 1992, J. Comb. Theory, Ser. B.
[3] Brendan D. McKay,et al. Asymptotic Enumeration by Degree Sequence of Graphs of High Degree , 1990, Eur. J. Comb..
[4] Edward A. Bender,et al. The Asymptotic Number of Labeled Graphs with Given Degree Sequences , 1978, J. Comb. Theory A.
[5] Alan M. Frieze,et al. Hamiltonian cycles in random regular graphs , 1984, J. Comb. Theory, Ser. B.
[6] Nicholas C. Wormald,et al. Almost All Regular Graphs Are Hamiltonian , 1994, Random Struct. Algorithms.
[7] Svante Janson,et al. Random graphs , 2000, ZOR Methods Model. Oper. Res..
[8] Béla Bollobás,et al. Almost all Regular Graphs are Hamiltonian , 1983, European journal of combinatorics (Print).
[9] Béla Bollobás,et al. A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..
[10] Alan M. Frieze,et al. Finding hamilton cycles in sparse random graphs , 1987, J. Comb. Theory, Ser. B.
[11] Benny Sudakov,et al. Random regular graphs of high degree , 2001, Random Struct. Algorithms.
[12] Nicholas C. Wormald,et al. Almost All Cubic Graphs Are Hamiltonian , 1992, Random Struct. Algorithms.
[13] N. Wormald,et al. Models of the , 2010 .
[14] L. Pósa,et al. Hamiltonian circuits in random graphs , 1976, Discret. Math..