The effect of an artificially synthesized simonkolleite layer on the corrosion of electrogalvanized steel

[1]  B. Vuillemin,et al.  Protective mechanisms occurring on zinc coated steel cut-edges in immersion conditions , 2011 .

[2]  T. Vu,et al.  Understanding corrosion via corrosion product characterization: II. Role of alloying elements in improving the corrosion resistance of Zn–Al–Mg coatings on steel , 2011 .

[3]  K. Kandori,et al.  Role of zinc compounds on the formation, morphology, and adsorption characteristics of β-FeOOH rusts , 2010 .

[4]  F. Pedraza,et al.  On the corrosion resistance of porous electroplated zinc coatings in different corrosive media , 2010, 1005.5554.

[5]  Y. Meas,et al.  Characterization of the corrosion products of electrodeposited Zn, Zn–Co and Zn–Mn alloys coatings , 2009 .

[6]  P. Volovitch,et al.  Understanding corrosion via corrosion product characterization: I. Case study of the role of Mg alloying in Zn–Mg coating on steel , 2009 .

[7]  M. Muhler,et al.  On the Role of Aging, Washing, and Drying in the Synthesis of Polycrystalline Zinc Oxide by Precipitation: Combining Fast Continuous Mixing, Spray Drying and Freeze Drying to Unravel the Solid-State Transformations of the Precipitate , 2009 .

[8]  H. Tamura The role of rusts in corrosion and corrosion protection of iron and steel , 2008 .

[9]  L. Sziráki,et al.  The electrochemical reduction of oxygen on zinc corrosion films in alkaline solutions , 2008 .

[10]  M. Erbil,et al.  The inhibitive effect of hexamethylenetetramine on the acid corrosion of steel , 2007 .

[11]  K. Kandori,et al.  Synthesis and characterization of layered zinc hydroxychlorides , 2007 .

[12]  K. Kandori,et al.  Air permeability of the artificially synthesized Zn-Al-Mg alloy rusts , 2007 .

[13]  Daniel de la Fuente,et al.  Long-term atmospheric corrosion of zinc , 2007 .

[14]  Takenori Nakayama,et al.  Assessment of protective function of steel rust layers by N2 adsorption , 2007 .

[15]  K. Kandori,et al.  Anion-exchange and thermal change of layered zinc hydroxides formed in the presence of Al(III) , 2007 .

[16]  K. Kandori,et al.  Synthesis of layered zinc hydroxide chlorides in the presence of Al(III) , 2006 .

[17]  D. Worsley,et al.  The kinetics and mechanism of cathodic oxygen reduction on zinc and zinc–aluminium alloy galvanized coatings , 2005 .

[18]  A. Nishikata,et al.  Oxygen reduction mechanism on corroded zinc , 2005 .

[19]  I. Cole,et al.  The protective nature of passivation films on zinc: surface charge , 2004 .

[20]  D. Thierry,et al.  Rate-determining reactions of atmospheric corrosion , 2004 .

[21]  D. Thierry,et al.  Formation of Corrosion Products on Open and Confined Zinc Surfaces Exposed to Periodic Wet/Dry Conditions , 2000 .

[22]  K. Ogle,et al.  Localized Electrochemical Methods Applied to Cut Edge Corrosion , 2000 .

[23]  X. Zhang,et al.  Corrosion and electrochemistry of zinc , 1996 .

[24]  C. Leygraf,et al.  The formation of Zn4SO4(OH)6·4H2O in a rural atmosphere , 1994 .

[25]  C. Leygraf,et al.  Formation of NaZn4Cl(OH)6SO4 · 6H2O in a marine atmosphere , 1993 .

[26]  S. Zecevic,et al.  Oxygen reduction on iron: Part III. An analysis of the rotating disk-ring electrode measurements in near neutral solutions , 1989 .

[27]  I. Suzuki The behavior of corrosion products on zinc in sodium chloride solution , 1985 .

[28]  M. Duprat,et al.  Sur le choix d'un critère de determination de la vitesse de corrosion d'un acier au carbone dans une solution à 3% de chlorure de sodium aérée et agitée , 1978 .