Chasing Hypernyms in Vector Spaces with Entropy

In this paper, we introduce SLQS , a new entropy-based measure for the unsupervised identification of hypernymy and its directionality in Distributional Semantic Models (DSMs). SLQS is assessed through two tasks: (i.) identifying the hypernym in hyponym-hypernym pairs, and (ii.) discriminating hypernymy among various semantic relations. In both tasks, SLQS outperforms other state-of-the-art measures.

[1]  Ido Dagan,et al.  The Distributional Inclusion Hypotheses and Lexical Entailment , 2005, ACL.

[2]  Daoud Clarke Context-theoretic Semantics for Natural Language: an Overview , 2009 .

[3]  Marti A. Hearst Automatic Acquisition of Hyponyms from Large Text Corpora , 1992, COLING.

[4]  Roberto Basili,et al.  Proceedings of the 2010 Workshop on GEometrical Models of Natural Language Semantics , 2009 .

[5]  V. Vemuri,et al.  Artificial neural networks: an introduction , 1988 .

[6]  Alessandro Lenci,et al.  Distributional Memory: A General Framework for Corpus-Based Semantics , 2010, CL.

[7]  Ido Dagan,et al.  Directional distributional similarity for lexical inference , 2010, Natural Language Engineering.

[8]  Alessandro Lenci,et al.  Identifying hypernyms in distributional semantic spaces , 2012, *SEMEVAL.

[9]  Sandy Lovie Shannon, Claude E , 2005 .

[10]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[11]  Magnus Sahlgren,et al.  The Word-Space Model: using distributional analysis to represent syntagmatic and paradigmatic relations between words in high-dimensional vector spaces , 2006 .

[12]  David J. Weir,et al.  Characterising Measures of Lexical Distributional Similarity , 2004, COLING.

[13]  Zellig S. Harris,et al.  Distributional Structure , 1954 .

[14]  Mirella Lapata,et al.  Dependency-Based Construction of Semantic Space Models , 2007, CL.

[15]  Alessandro Lenci,et al.  How we BLESSed distributional semantic evaluation , 2011, GEMS.

[16]  G. Murphy,et al.  The Big Book of Concepts , 2002 .

[17]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[18]  Jonathan Ginzburg,et al.  Proceedings of COLING 2004 , 2004 .

[19]  David J. Weir,et al.  A General Framework for Distributional Similarity , 2003, EMNLP.

[20]  Patrick Pantel,et al.  From Frequency to Meaning: Vector Space Models of Semantics , 2010, J. Artif. Intell. Res..

[21]  Carl Vogel,et al.  Proceedings of the 16th International Conference on Computational Linguistics , 1996, COLING 1996.