KELP: a Kernel-based Learning Platform

KeLP is a Java framework that enables fast and easy implementation of kernel functions over discrete data, such as strings, trees or graphs and their combination with standard vectorial kernels. Additionally, it provides several kernel-based algorithms, e.g., online and batch kernel machines for classification, regression and clustering, and a Java environment for easy implementation of new algorithms. KeLP is a versatile toolkit, very appealing both to experts and practitioners of machine learning and Java language programming, who can find extensive documentation, tutorials and examples of increasing complexity on the accompanying website. Interestingly, KeLP can be also used without any knowledge of Java programming through command line tools and JSON/XML interfaces enabling the declaration and instantiation of articulated learning models using simple templates. Finally, the extensive use of modularity and interfaces in KeLP enables developers to easily extend it with their own kernels and algorithms.

[1]  Leslie Lamport,et al.  LaTeX User''''s Guide and Document Reference Manual , 1986 .

[2]  Christopher K. I. Williams,et al.  Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.

[3]  Nello Cristianini,et al.  Classification using String Kernels , 2000 .

[4]  Michael Collins,et al.  Convolution Kernels for Natural Language , 2001, NIPS.

[5]  Thomas Gärtner,et al.  A survey of kernels for structured data , 2003, SKDD.

[6]  Thomas Hofmann,et al.  Hidden Markov Support Vector Machines , 2003, ICML.

[7]  Hans-Peter Kriegel,et al.  Shortest-path kernels on graphs , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[8]  Alessandro Moschitti,et al.  Efficient Convolution Kernels for Dependency and Constituent Syntactic Trees , 2006, ECML.

[9]  Alessandro Moschitti,et al.  Fast and effective kernels for relational learning from texts , 2007, ICML '07.

[10]  Chih-Jen Lin,et al.  A dual coordinate descent method for large-scale linear SVM , 2008, ICML '08.

[11]  Inderjit S. Dhillon,et al.  Semi-supervised graph clustering: a kernel approach , 2005, Machine Learning.

[12]  Yvan Saeys,et al.  Java-ML: A Machine Learning Library , 2009, J. Mach. Learn. Res..

[13]  Alessandro Sperduti,et al.  Route kernels for trees , 2009, ICML '09.

[14]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[15]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[16]  Kurt Mehlhorn,et al.  Weisfeiler-Lehman Graph Kernels , 2011, J. Mach. Learn. Res..

[17]  Roberto Basili,et al.  Structured Lexical Similarity via Convolution Kernels on Dependency Trees , 2011, EMNLP.

[18]  Steven C. H. Hoi,et al.  Exact Soft Confidence-Weighted Learning , 2012, ICML.

[19]  JKernelMachines : A Simple Framework for Kernel Machines , 2013 .

[20]  Roberto Basili,et al.  Semantic Compositionality in Tree Kernels , 2014, CIKM.

[21]  Alessandro Moschitti,et al.  Assessing the Impact of Syntactic and Semantic Structures for Answer Passages Reranking , 2015, CIKM.

[22]  Alessandro Moschitti,et al.  Structural Representations for Learning Relations between Pairs of Texts , 2015, ACL.