Numerical Bifurcation Analysis
暂无分享,去创建一个
[1] Willy Govaerts,et al. Numerical Periodic Normalization for Codim 1 Bifurcations of Limit Cycles , 2005, SIAM J. Numer. Anal..
[2] E. A. Spiegel,et al. Amplitude Equations for Systems with Competing Instabilities , 1983 .
[3] W. Govaerts,et al. Switching to nonhyperbolic cycles from codim 2 bifurcations of equilibria in ODEs , 2008 .
[4] P. Deuflhard,et al. Efficient numerical path following beyond critical points , 1987 .
[5] Willy Govaerts,et al. MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs , 2003, TOMS.
[6] C. Stéphanos. Sur une extension du calcul des substitutions linéaires , 1900 .
[7] Willy Govaerts,et al. Numerical Continuation of Branch Points of Equilibria and Periodic orbits , 2005, Int. J. Bifurc. Chaos.
[8] C. D. Boor,et al. Collocation at Gaussian Points , 1973 .
[9] G. Iooss,et al. Global Characterization of the Normal Form for a Vector Field Near a Closed Orbit , 1988 .
[10] Yu. A. Kuznetsov,et al. Remarks on interacting Neimark–Sacker bifurcations , 2006 .
[11] Bernd Krauskopf,et al. A Lin's method approach to finding and continuing heteroclinic connections involving periodic orbits , 2008 .
[12] J. Guckenheimer,et al. Computing Hopf Bifurcations I , 1997 .
[13] H. B. Keller,et al. NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE DIMENSIONS , 1991 .
[14] A. Spence,et al. Continuation and Bifurcations: Numerical Techniques and Applications , 1990 .
[15] Björn Sandstede,et al. A numerical toolbox for homoclinic bifurcation analysis , 1996 .
[16] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[17] J. R. M. Radok,et al. Numerical Solution of Boundary Value Problems , 1960 .
[18] Willy Govaerts,et al. Numerical Methods for Two-Parameter Local Bifurcation Analysis of Maps , 2007, SIAM J. Sci. Comput..
[19] Eugene L. Allgower,et al. Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.
[20] Louis A. Romero,et al. Bifurcation Tracking Algorithms and Software for Large Scale Applications , 2005, Int. J. Bifurc. Chaos.
[21] Boris Hasselblatt,et al. Handbook of Dynamical Systems , 2010 .
[22] G. Iooss,et al. Topics in bifurcation theory and applications , 1999 .
[23] Bard Ermentrout,et al. Simulating, analyzing, and animating dynamical systems - a guide to XPPAUT for researchers and students , 2002, Software, environments, tools.
[24] Frank Schilder,et al. Fourier methods for quasi‐periodic oscillations , 2006, International Journal for Numerical Methods in Engineering.
[25] Randy C. Paffenroth,et al. Elemental Periodic orbits Associated with the libration Points in the Circular Restricted 3-Body Problem , 2007, Int. J. Bifurc. Chaos.
[26] Gábor Stépán,et al. Continuation of Bifurcations in Periodic Delay-Differential Equations Using Characteristic Matrices , 2006, SIAM J. Sci. Comput..
[27] Wolf-Jürgen Beyn,et al. Numerical analysis of homoclinic orbits emanating from a Takens-Bogdanov point , 1994 .
[28] Willy Govaerts,et al. Continuation of Homoclinic Orbits in Matlab , 2005, International Conference on Computational Science.
[29] John Guckenheimer,et al. A Survey of Methods for Computing (un)Stable Manifolds of Vector Fields , 2005, Int. J. Bifurc. Chaos.
[30] Àngel Jorba,et al. Numerical computation of the normal behaviour of invariant curves of n-dimensional maps , 2001 .
[31] Wolf-Jürgen Beyn,et al. The Numerical Computation of Connecting Orbits in Dynamical Systems , 1990 .
[32] John Guckenheimer,et al. Numerical Analysis of Dynamical Systems , 1999 .
[33] P. Coullet,et al. A simple global characterization for normal forms of singular vector fields , 1987 .
[34] Dirk Roose,et al. Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL , 2002, TOMS.
[35] B. Krauskopf,et al. Numerical Continuation Methods for Dynamical Systems: Path following and boundary value problems , 2007 .
[36] Robert D. Russell,et al. Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.
[37] Sj Vanstrien,et al. CENTER MANIFOLDS ARE NOT C-INFINITY , 1979 .
[38] Alan R. Champneys,et al. Homoclinic Branch Switching: a Numerical Implementation of Lin's Method , 2003, Int. J. Bifurc. Chaos.
[39] Pierre Gaspard,et al. Local birth of homoclinic chaos , 1993 .
[40] Dirk Roose,et al. A Direct Method for the Computation of Hopf Bifurcation Points , 1985 .
[41] M. Hirsch,et al. Differential Equations, Dynamical Systems, and an Introduction to Chaos , 2003 .
[42] Vladimir Igorevich Arnold,et al. Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .
[43] Willy Govaerts,et al. Interactive continuation tools. , 2007 .
[44] A. I. Khibnik,et al. LINLBF: A Program for Continuation and Bifurcation Analysis of Equilibria Up to Codimension Three , 1990 .
[45] Willy Govaerts,et al. Numerical methods for bifurcations of dynamical equilibria , 1987 .
[46] G. Moore,et al. The numerical treatment of non-trivial bifurcation points , 1980 .
[47] Bernd Krauskopf,et al. Homoclinic bifurcations in a neutral delay model of a transmission line oscillator , 2007 .
[48] Dirk Roose,et al. Direct computation of period doubling bifurcation points of large-scale systems of ODEs using a Newt , 1999 .
[49] Eusebius J. Doedel,et al. Lecture Notes on Numerical Analysis of Nonlinear Equations , 2007 .
[50] Yu. A. Kuznetsov,et al. Numerical Normalization Techniques for All Codim 2 Bifurcations of Equilibria in ODE's , 1999 .
[51] James Murdock,et al. Normal Forms and Unfoldings for Local Dynamical Systems , 2002 .
[52] H. Osinga,et al. Continuation of quasiperiodic invariant tori , 2006 .
[53] Z. Mei. Numerical Bifurcation Analysis for Reaction-Diffusion Equations , 2000 .
[54] Frank Schilder,et al. Continuation of Quasi-periodic Invariant Tori , 2005, SIAM J. Appl. Dyn. Syst..
[55] Peter Deuflhard,et al. Scientific Computing with Ordinary Differential Equations , 2002 .
[56] J. Guckenheimer,et al. Defining Functions for Multiple Hopf Bifurcations , 1997 .
[57] Y. Kuznetsov,et al. New features of the software MatCont for bifurcation analysis of dynamical systems , 2008 .
[58] Michael E. Henderson,et al. Higher-Dimensional Continuation , 2007 .
[59] Meiyuan Zhen,et al. A numerical approximation for the simple bifurcation problems , 1989 .
[60] Y. Kuznetsov. Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.
[61] W. Govaerts,et al. MIXED BLOCK ELIMINATION FOR LINEAR-SYSTEMS WITH WIDER BORDERS. , 1993 .
[62] Dirk Roose,et al. An Adaptive Newton-Picard Algorithm with Subspace Iteration for Computing Periodic Solutions , 1998, SIAM J. Sci. Comput..
[63] Fabio Dercole. BPCONT: An Auto Driver for the Continuation of Branch Points of Algebraic and Boundary-Value Problems , 2008, SIAM J. Sci. Comput..
[64] Yuri A. Kuznetsov,et al. Continuation of Connecting orbits in 3D-ODES (I): Point-to-Cycle Connections , 2007, Int. J. Bifurc. Chaos.
[65] Wolf-Jürgen Beyn,et al. The Numerical Computation of Homoclinic Orbits for Maps , 1997 .
[66] A. Fuller,et al. Conditions for a matrix to have only characteristic roots with negative real parts , 1968 .
[67] Willy Govaerts,et al. Numerical Continuation of Bifurcations of Limit Cycles in MATLAB , 2005, SIAM J. Sci. Comput..
[68] W. Beyn. Numerical methods for dynamical systems , 1991 .
[69] R. Russell,et al. Adaptive Mesh Selection Strategies for Solving Boundary Value Problems , 1978 .
[70] Willy Govaerts,et al. Bifurcations of Maps in the Software Package CONTENT , 1999, CASC.
[71] Willy Govaerts,et al. Computation of Periodic Solution Bifurcations in ODEs Using Bordered Systems , 2003, SIAM J. Numer. Anal..
[72] Yuri A. Kuznetsov,et al. Continuation of Connecting orbits in 3D-ODES (II) : Cycle-to-Cycle Connections , 2008, Int. J. Bifurc. Chaos.
[73] J. Carr. Applications of Centre Manifold Theory , 1981 .
[74] Bernd Krauskopf,et al. Numerical Continuation Methods for Dynamical Systems , 2007 .
[75] R. Devaney. An Introduction to Chaotic Dynamical Systems , 1990 .
[76] Yuri A. Kuznetsov,et al. Numerical Normal Forms for Codim 2 Bifurcations of Fixed Points with at Most Two Critical Eigenvalues , 2005, SIAM J. Sci. Comput..