Numerical Bifurcation Analysis

The theory of dynamical systems studies the behavior of solutions of systems, like nonlinear ordinary differential equations (ODEs), depending upon parameters. Using qualitative methods of bifurcation theory, the behavior of the system is characterized for various parameter combinations. In particular, the catalog of system behaviors showing qualitative differences can be identified, together with the regions in parameter space where the different behaviors occur. Bifurcations delimit such regions. Symbolic and analytical approaches are in general infeasible, but numerical bifurcation analysis is a powerful tool that aids in the understanding of a nonlinear system. When computing power became widely available, algorithms for this type of analysis matured and the first codes were developed. With the development of suitable algorithms, the advancement in the qualitative theory has found its way into several software projects evolving over time. The availability of software packages allows scientists to study and adjust their models and to draw conclusions about their dynamics.

[1]  Willy Govaerts,et al.  Numerical Periodic Normalization for Codim 1 Bifurcations of Limit Cycles , 2005, SIAM J. Numer. Anal..

[2]  E. A. Spiegel,et al.  Amplitude Equations for Systems with Competing Instabilities , 1983 .

[3]  W. Govaerts,et al.  Switching to nonhyperbolic cycles from codim 2 bifurcations of equilibria in ODEs , 2008 .

[4]  P. Deuflhard,et al.  Efficient numerical path following beyond critical points , 1987 .

[5]  Willy Govaerts,et al.  MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs , 2003, TOMS.

[6]  C. Stéphanos Sur une extension du calcul des substitutions linéaires , 1900 .

[7]  Willy Govaerts,et al.  Numerical Continuation of Branch Points of Equilibria and Periodic orbits , 2005, Int. J. Bifurc. Chaos.

[8]  C. D. Boor,et al.  Collocation at Gaussian Points , 1973 .

[9]  G. Iooss,et al.  Global Characterization of the Normal Form for a Vector Field Near a Closed Orbit , 1988 .

[10]  Yu. A. Kuznetsov,et al.  Remarks on interacting Neimark–Sacker bifurcations , 2006 .

[11]  Bernd Krauskopf,et al.  A Lin's method approach to finding and continuing heteroclinic connections involving periodic orbits , 2008 .

[12]  J. Guckenheimer,et al.  Computing Hopf Bifurcations I , 1997 .

[13]  H. B. Keller,et al.  NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE DIMENSIONS , 1991 .

[14]  A. Spence,et al.  Continuation and Bifurcations: Numerical Techniques and Applications , 1990 .

[15]  Björn Sandstede,et al.  A numerical toolbox for homoclinic bifurcation analysis , 1996 .

[16]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[17]  J. R. M. Radok,et al.  Numerical Solution of Boundary Value Problems , 1960 .

[18]  Willy Govaerts,et al.  Numerical Methods for Two-Parameter Local Bifurcation Analysis of Maps , 2007, SIAM J. Sci. Comput..

[19]  Eugene L. Allgower,et al.  Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.

[20]  Louis A. Romero,et al.  Bifurcation Tracking Algorithms and Software for Large Scale Applications , 2005, Int. J. Bifurc. Chaos.

[21]  Boris Hasselblatt,et al.  Handbook of Dynamical Systems , 2010 .

[22]  G. Iooss,et al.  Topics in bifurcation theory and applications , 1999 .

[23]  Bard Ermentrout,et al.  Simulating, analyzing, and animating dynamical systems - a guide to XPPAUT for researchers and students , 2002, Software, environments, tools.

[24]  Frank Schilder,et al.  Fourier methods for quasi‐periodic oscillations , 2006, International Journal for Numerical Methods in Engineering.

[25]  Randy C. Paffenroth,et al.  Elemental Periodic orbits Associated with the libration Points in the Circular Restricted 3-Body Problem , 2007, Int. J. Bifurc. Chaos.

[26]  Gábor Stépán,et al.  Continuation of Bifurcations in Periodic Delay-Differential Equations Using Characteristic Matrices , 2006, SIAM J. Sci. Comput..

[27]  Wolf-Jürgen Beyn,et al.  Numerical analysis of homoclinic orbits emanating from a Takens-Bogdanov point , 1994 .

[28]  Willy Govaerts,et al.  Continuation of Homoclinic Orbits in Matlab , 2005, International Conference on Computational Science.

[29]  John Guckenheimer,et al.  A Survey of Methods for Computing (un)Stable Manifolds of Vector Fields , 2005, Int. J. Bifurc. Chaos.

[30]  Àngel Jorba,et al.  Numerical computation of the normal behaviour of invariant curves of n-dimensional maps , 2001 .

[31]  Wolf-Jürgen Beyn,et al.  The Numerical Computation of Connecting Orbits in Dynamical Systems , 1990 .

[32]  John Guckenheimer,et al.  Numerical Analysis of Dynamical Systems , 1999 .

[33]  P. Coullet,et al.  A simple global characterization for normal forms of singular vector fields , 1987 .

[34]  Dirk Roose,et al.  Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL , 2002, TOMS.

[35]  B. Krauskopf,et al.  Numerical Continuation Methods for Dynamical Systems: Path following and boundary value problems , 2007 .

[36]  Robert D. Russell,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[37]  Sj Vanstrien,et al.  CENTER MANIFOLDS ARE NOT C-INFINITY , 1979 .

[38]  Alan R. Champneys,et al.  Homoclinic Branch Switching: a Numerical Implementation of Lin's Method , 2003, Int. J. Bifurc. Chaos.

[39]  Pierre Gaspard,et al.  Local birth of homoclinic chaos , 1993 .

[40]  Dirk Roose,et al.  A Direct Method for the Computation of Hopf Bifurcation Points , 1985 .

[41]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and an Introduction to Chaos , 2003 .

[42]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[43]  Willy Govaerts,et al.  Interactive continuation tools. , 2007 .

[44]  A. I. Khibnik,et al.  LINLBF: A Program for Continuation and Bifurcation Analysis of Equilibria Up to Codimension Three , 1990 .

[45]  Willy Govaerts,et al.  Numerical methods for bifurcations of dynamical equilibria , 1987 .

[46]  G. Moore,et al.  The numerical treatment of non-trivial bifurcation points , 1980 .

[47]  Bernd Krauskopf,et al.  Homoclinic bifurcations in a neutral delay model of a transmission line oscillator , 2007 .

[48]  Dirk Roose,et al.  Direct computation of period doubling bifurcation points of large-scale systems of ODEs using a Newt , 1999 .

[49]  Eusebius J. Doedel,et al.  Lecture Notes on Numerical Analysis of Nonlinear Equations , 2007 .

[50]  Yu. A. Kuznetsov,et al.  Numerical Normalization Techniques for All Codim 2 Bifurcations of Equilibria in ODE's , 1999 .

[51]  James Murdock,et al.  Normal Forms and Unfoldings for Local Dynamical Systems , 2002 .

[52]  H. Osinga,et al.  Continuation of quasiperiodic invariant tori , 2006 .

[53]  Z. Mei Numerical Bifurcation Analysis for Reaction-Diffusion Equations , 2000 .

[54]  Frank Schilder,et al.  Continuation of Quasi-periodic Invariant Tori , 2005, SIAM J. Appl. Dyn. Syst..

[55]  Peter Deuflhard,et al.  Scientific Computing with Ordinary Differential Equations , 2002 .

[56]  J. Guckenheimer,et al.  Defining Functions for Multiple Hopf Bifurcations , 1997 .

[57]  Y. Kuznetsov,et al.  New features of the software MatCont for bifurcation analysis of dynamical systems , 2008 .

[58]  Michael E. Henderson,et al.  Higher-Dimensional Continuation , 2007 .

[59]  Meiyuan Zhen,et al.  A numerical approximation for the simple bifurcation problems , 1989 .

[60]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[61]  W. Govaerts,et al.  MIXED BLOCK ELIMINATION FOR LINEAR-SYSTEMS WITH WIDER BORDERS. , 1993 .

[62]  Dirk Roose,et al.  An Adaptive Newton-Picard Algorithm with Subspace Iteration for Computing Periodic Solutions , 1998, SIAM J. Sci. Comput..

[63]  Fabio Dercole BPCONT: An Auto Driver for the Continuation of Branch Points of Algebraic and Boundary-Value Problems , 2008, SIAM J. Sci. Comput..

[64]  Yuri A. Kuznetsov,et al.  Continuation of Connecting orbits in 3D-ODES (I): Point-to-Cycle Connections , 2007, Int. J. Bifurc. Chaos.

[65]  Wolf-Jürgen Beyn,et al.  The Numerical Computation of Homoclinic Orbits for Maps , 1997 .

[66]  A. Fuller,et al.  Conditions for a matrix to have only characteristic roots with negative real parts , 1968 .

[67]  Willy Govaerts,et al.  Numerical Continuation of Bifurcations of Limit Cycles in MATLAB , 2005, SIAM J. Sci. Comput..

[68]  W. Beyn Numerical methods for dynamical systems , 1991 .

[69]  R. Russell,et al.  Adaptive Mesh Selection Strategies for Solving Boundary Value Problems , 1978 .

[70]  Willy Govaerts,et al.  Bifurcations of Maps in the Software Package CONTENT , 1999, CASC.

[71]  Willy Govaerts,et al.  Computation of Periodic Solution Bifurcations in ODEs Using Bordered Systems , 2003, SIAM J. Numer. Anal..

[72]  Yuri A. Kuznetsov,et al.  Continuation of Connecting orbits in 3D-ODES (II) : Cycle-to-Cycle Connections , 2008, Int. J. Bifurc. Chaos.

[73]  J. Carr Applications of Centre Manifold Theory , 1981 .

[74]  Bernd Krauskopf,et al.  Numerical Continuation Methods for Dynamical Systems , 2007 .

[75]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[76]  Yuri A. Kuznetsov,et al.  Numerical Normal Forms for Codim 2 Bifurcations of Fixed Points with at Most Two Critical Eigenvalues , 2005, SIAM J. Sci. Comput..