TRIQS/DFTTools: A TRIQS application for ab initio calculations of correlated materials

We present the TRIQS/DFTTools package, an application based on the TRIQS library that connects this toolbox to realistic materials calculations based on density functional theory (DFT). In particular, TRIQS/DFTTools together with TRIQS allows an efficient implementation of DFT plus dynamical mean-field theory (DMFT) calculations. It supplies tools and methods to construct Wannier functions and to perform the DMFT self-consistency cycle in this basis set. Post-processing tools, such as band-structure plotting or the calculation of transport properties are also implemented. The package comes with a fully charge self-consistent interface to the Wien2k band structure code, as well as a generic interface that allows to use TRIQS/DFTTools together with a large variety of DFT codes. It is distributed under the GNU General Public License (GPLv3).

[1]  A. Georges,et al.  Band Structure and Terahertz Optical Conductivity of Transition Metal Oxides: Theory and Application to CaRuO(3). , 2014, Physical review letters.

[2]  V. Anisimov,et al.  Construction and solution of a Wannier-functions based Hamiltonian in the pseudopotential plane-wave framework for strongly correlated materials , 2008, 0801.3500.

[3]  Kristjan Haule Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base , 2007 .

[4]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[5]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[6]  Jorge O. Sofo,et al.  Linear optical properties of solids within the full-potential linearized augmented planewave method , 2004, Comput. Phys. Commun..

[7]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[8]  Hartmut Hafermann,et al.  TRIQS: A toolbox for research on interacting quantum systems , 2015, Comput. Phys. Commun..

[9]  Anton Kokalj,et al.  Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale , 2003 .

[10]  I. A. Nekrasov,et al.  Full orbital calculation scheme for materials with strongly correlated electrons , 2004, cond-mat/0407359.

[11]  T. M. Rice,et al.  Metal‐Insulator Transitions , 2003 .

[12]  Hiroaki Ikeda,et al.  Wien2wannier: From linearized augmented plane waves to maximally localized Wannier functions , 2010, Comput. Phys. Commun..

[13]  Andrew J. Millis,et al.  Computing total energies in complex materials using charge self-consistent DFT+DMFT , 2014, 1409.4135.

[14]  Jan Kunes,et al.  woptic: Optical conductivity with Wannier functions and adaptive k-mesh refinement , 2015, Comput. Phys. Commun..

[15]  Matthias Troyer,et al.  Continuous-time solver for quantum impurity models. , 2005, Physical review letters.

[16]  A. Georges,et al.  Coherence-incoherence crossover and the mass-renormalization puzzles in Sr(2)RuO(4). , 2010, Physical review letters.

[17]  I. Hase,et al.  Band-width control in a perovskite-type 3d 1 correlated metal Ca1 xSrxVO3. II. Optical spectroscopy investigation. , 1998 .

[18]  T. Pruschke,et al.  Evidence for strong electronic correlations in the spectra of Sr2RuO4 , 2006, cond-mat/0601507.

[19]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[20]  O. K. Andersen,et al.  Muffin-tin orbitals of arbitrary order , 2000 .

[21]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[22]  Khurana Electrical conductivity in the infinite-dimensional Hubbard model. , 1990, Physical review letters.

[23]  B. Amadon,et al.  A self-consistent DFT + DMFT scheme in the projector augmented wave method: applications to cerium, Ce2O3 and Pu2O3 with the Hubbard I solver and comparison to DFT + U , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[24]  USA,et al.  First-principles calculations of the electronic structure and spectra of strongly correlated systems: Dynamical mean-field theory , 1997, cond-mat/9704231.

[25]  K. S. D. Beach Identifying the maximum entropy method as a special limit of stochastic analytic continuation , 2004 .

[26]  David J. Singh Planewaves, Pseudopotentials, and the LAPW Method , 1993 .

[27]  Markus Aichhorn,et al.  Importance of electronic correlations for structural and magnetic properties of the iron pnictide superconductor LaFeAsO , 2011, 1104.4361.

[28]  M. Troyer,et al.  Continuous-time Monte Carlo methods for quantum impurity models , 2010, 1012.4474.

[29]  C. Marianetti,et al.  Electronic structure calculations with dynamical mean-field theory , 2005, cond-mat/0511085.

[30]  N. Marzari,et al.  Maximally localized Wannier functions for entangled energy bands , 2001, cond-mat/0108084.

[31]  Mark Jarrell,et al.  Bayesian Inference and the Analytic Continuation of Imaginary-Time Quantum Monte Carlo Data , 1995 .

[32]  P. Dougier,et al.  Etude des proprietes magnetiques, electriques et optiques des phases de structure perovskite SrVO2.90 et SrVO3 , 1975 .

[33]  Olivier Parcollet,et al.  TRIQS/CTHYB: A continuous-time quantum Monte Carlo hybridisation expansion solver for quantum impurity problems , 2015, Comput. Phys. Commun..

[34]  Kristjan Haule,et al.  Dynamical mean-field theory within the full-potential methods: Electronic structure of CeIrIn 5 , CeCoIn 5 , and CeRhIn 5 , 2009, 0907.0195.

[35]  A. Georges,et al.  Dynamical mean-field theory within an augmented plane-wave framework: Assessing electronic correlations in the iron pnictide LaFeAsO , 2009, 0906.3735.

[36]  A. Georges,et al.  Self-consistency over the charge density in dynamical mean-field theory: A linear muffin-tin implementation and some physical implications , 2007, 0705.2161.

[37]  Kristjan Haule,et al.  Lazy skip-lists: An algorithm for fast hybridization-expansion quantum Monte Carlo , 2014, 1403.7214.

[38]  K. Held,et al.  Electronic structure calculations using dynamical mean field theory , 2005, cond-mat/0511293.

[39]  F. Lechermann,et al.  Dynamical mean-field theory using Wannier functions: A flexible route to electronic structure calculations of strongly correlated materials , 2006 .

[40]  Philipp Werner,et al.  Hybridization expansion impurity solver: General formulation and application to Kondo lattice and two-orbital models , 2006 .

[41]  A. I. Lichtenstein,et al.  Continuous-time quantum Monte Carlo method for fermions , 2005 .

[42]  A. Georges,et al.  The coherence-incoherence crossover and the mass-renormalization puzzles in Sr2RuO4 , 2010 .

[43]  Markus Aichhorn,et al.  Reduced effective spin-orbital degeneracy and spin-orbital ordering in paramagnetic transition-metal oxides: Sr2IrO4 versus Sr2RhO4. , 2011, Physical review letters.