Thermo-mechanical behavior of shape memory alloy spring actuated using novel scanning technique powered by ytterbium doped continuous fiber laser

[1]  Jinhua Zhu,et al.  Cavitation erosion of Fe–Mn–Si–Cr shape memory alloys , 2004 .

[2]  B. K. Lad,et al.  Investigation on actuation and thermo-mechanical behaviour of Shape Memory Alloy spring using hot water , 2016 .

[3]  Radovan Kovacevic,et al.  Experimental and numerical modeling of buckling instability of laser sheet forming , 2002 .

[4]  C. Hong,et al.  Application of a magnetostrictive actuator , 2013 .

[5]  Martin Leary,et al.  A review of shape memory alloy research, applications and opportunities , 2014 .

[6]  W. Huang,et al.  Stimulus-responsive shape memory materials: A review , 2012 .

[7]  Othmane Benafan,et al.  Design and development of a shape memory alloy activated heat pipe-based thermal switch , 2013 .

[8]  I. A. Palani,et al.  Investigations on actuation characteristics and life cycle behaviour of CuAlNiMn shape memory alloy bimorph towards flappers for aerial robots , 2018 .

[9]  M. Kohl,et al.  Shape memory alloy microvalves for a fluidic control system , 2014 .

[10]  T. Tadaki,et al.  Shape Memory Alloys , 2002 .

[11]  M. Lejeune,et al.  Thermo-mechanical characterization of optical thin films filters deposited onto shape memory alloy micro-actuators , 2014 .

[12]  Tzong-Shi Liu,et al.  Modeling and experiment of three-degree-of-freedom actuators using piezoelectric buzzers , 2013 .

[13]  Volker Wesling,et al.  Transcutaneous electromagnetic induction heating of an intramedullary nickel–titanium shape memory implant , 2014, International Orthopaedics.

[14]  Stefan Seelecke,et al.  High-speed and high-efficiency shape memory alloy actuation , 2018, Smart Materials and Structures.

[15]  C. Sow,et al.  Visible microactuation of a ferromagnetic shape memory alloy by focused laser beam , 2012 .

[16]  H. Okamura,et al.  Light-Driven Actuator with Shape Memory Alloy for Manipulation of Macroscopic Objects , 2009 .

[17]  Sung-Hoon Ahn,et al.  Woven type smart soft composite for soft morphing car spoiler , 2016 .

[18]  Ausonio Tuissi,et al.  Response of NiTi SMA wire electrically heated , 2009 .

[19]  Elena Villa,et al.  The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators , 2010 .

[20]  Abdul Basit,et al.  High actuation properties of shape memory polymer composite actuator , 2013 .

[21]  Abdul-Ghani Olabi,et al.  Design of a magnetostrictive (MS) actuator , 2008 .

[22]  F. Lamarque,et al.  Contactless and selective energy transfer to a bistable micro-actuator using laser heated shape memory alloy , 2012 .

[23]  Kirsten Morris,et al.  Mechanism of bandwidth improvement in passively cooled SMA position actuators , 2009 .

[24]  A. Ishida Ti–Ni–Cu/polyimide composite-film actuator and simulation tool , 2015 .

[25]  Dimitris C. Lagoudas,et al.  Development of a fuel-powered shape memory alloy actuator system: I. Numerical analysis , 2007 .

[26]  In Lee,et al.  Experimental Studies on Active Shape Control of Composite Structures using SMA Actuators , 2006 .

[27]  Manyalibo J. Matthews,et al.  Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica , 2010 .

[28]  Roy Featherstone,et al.  Improving the Speed of Shape Memory Alloy Actuators by Faster Electrical Heating , 2004, ISER.

[29]  Aleksandar Subic,et al.  Designing shape memory alloy linear actuators: A review , 2017 .

[30]  S. Inoue,et al.  Ti–Ni shape memory alloy film-actuated microstructures for a MEMS probe card , 2006 .

[31]  Toshiro Noritsugu,et al.  Pneumatic artificial rubber muscle using shape-memory polymer sheet with embedded electrical heating wire , 2014 .

[32]  O. Benafan,et al.  Apparatus and method for low-temperature training of shape memory alloys , 2015 .

[33]  Peter Koltay,et al.  Digital hydraulic drive for microfluidics and miniaturized cell culture devices based on shape memory alloy actuators , 2018 .

[34]  R. Pelrine,et al.  Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation , 1998 .

[35]  Y. Suzuki,et al.  Micro electrostrictive actuator with metal compliant electrodes for flow control applications , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[36]  Carmel Majidi,et al.  Bio-inspired soft robotics: Material selection, actuation, and design , 2018, Extreme Mechanics Letters.

[37]  Arnaud Duval,et al.  Finite Element analysis of a shape memory alloy actuator for a micropump , 2012, Simul. Model. Pract. Theory.

[38]  R. Wood,et al.  Concomitant sensing and actuation for piezoelectric microrobots , 2018 .

[39]  M. Friswell,et al.  A review on shape memory alloys with applications to morphing aircraft , 2014 .

[40]  X. Zhang,et al.  A comparative study on the corrosion behavior of porous and dense NiTi shape memory alloys in NaCl solution , 2011 .

[41]  D. Lagoudas Shape memory alloys : modeling and engineering applications , 2008 .

[42]  Christian Boller,et al.  Design and performance of a shape memory alloy-reinforced composite aerodynamic profile , 2008 .

[43]  Gangbing Song,et al.  A review of shape memory material’s applications in the offshore oil and gas industry , 2017 .

[44]  Sung-hoon Ahn,et al.  Shape Memory Alloy (SMA)-Based Microscale Actuators with 60% Deformation Rate and 1.6 kHz Actuation Speed. , 2018, Small.

[45]  Manfred Kohl,et al.  SMA microgripper system , 2002 .

[46]  Thermo-electric behaviour of NiTi shape memory alloy , 2013 .

[47]  Kenichi Takahata,et al.  Wireless microfluidic control with integrated shape-memory-alloy actuators operated by field frequency modulation , 2011 .

[48]  R. Wood,et al.  A novel low-profile shape memory alloy torsional actuator , 2010 .

[49]  K. Takahata,et al.  Frequency-controlled wireless shape-memory-alloy microactuators integrated using an electroplating bonding process , 2010 .

[50]  J. Fauroux,et al.  A review of rotary actuators based on shape memory alloys , 2017 .

[51]  T. Nam,et al.  Temperature profiles in a Ti-45Ni-5Cu (at%) shape memory alloy developed by the Joule heating , 2010 .

[52]  Dimitris C. Lagoudas,et al.  Development of a fuel-powered shape memory alloy actuator system: II. Fabrication and testing , 2007 .

[53]  Yanju Liu,et al.  Morphing aircraft based on smart materials and structures: A state-of-the-art review , 2016 .

[54]  Sung-Hoon Ahn,et al.  A turtle-like swimming robot using a smart soft composite (SSC) structure , 2012 .

[55]  Dimitris C. Lagoudas,et al.  Use of a Ni60Ti shape memory alloy for active jet engine chevron application: I. Thermomechanical characterization , 2009 .

[56]  Edwige E. Pissaloux,et al.  MODELLING AND TEMPERATURE CONTROL OF SHAPE MEMORY ALLOYS WITH FAST ELECTRICAL HEATING , 2012 .

[57]  R. Wood,et al.  Meshworm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators , 2013, IEEE/ASME Transactions on Mechatronics.

[58]  B. Kuhlenkötter,et al.  Impact of Different Electrical Time-Based Activations on NiTi Shape Memory Alloys , 2017 .

[59]  C. Haasper,et al.  Electromagnetic induction heating of an orthopaedic nickel–titanium shape memory device , 2010, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.