Developmental regulation of human beta-globin gene transcription: a switch of loyalties?

[1]  J. D. Engel,et al.  Ectopic expression of a conditional GATA-2/estrogen receptor chimera arrests erythroid differentiation in a hormone-dependent manner. , 1993, Genes & development.

[2]  G. Jiménez,et al.  The mouse β-globin locus control region: hypersensitive sites 3 and 4 , 1992 .

[3]  Frank Grosveld,et al.  A single point mutation is the cause of the Greek form of hereditary persistence of fetal haemoglobin , 1992, Nature.

[4]  S. Jane,et al.  Identification of a stage selector element in the human gamma‐globin gene promoter that fosters preferential interaction with the 5′ HS2 enhancer when in competition with the beta‐promoter. , 1992, The EMBO journal.

[5]  J. Maddox Is charge quantization exact? , 1992, Nature.

[6]  G. Felsenfeld,et al.  The developmental switch in embryonic rho-globin expression is correlated with erythroid lineage-specific differences in transcription factor levels. , 1992, Development.

[7]  W. C. Forrester,et al.  Inactivation of the human beta-globin gene by targeted insertion into the beta-globin locus control region. , 1992, Genes & development.

[8]  J. D. Engel,et al.  Individual stage selector element mutations lead to reciprocal changes in beta- vs. epsilon-globin gene transcription: genetic confirmation of promoter competition during globin gene switching. , 1992, Genes & development.

[9]  J. Sharpe,et al.  A single beta-globin locus control region element (5' hypersensitive site 2) is sufficient for developmental regulation of human globin genes in transgenic mice , 1992, Molecular and cellular biology.

[10]  J. Lingrel,et al.  Human gamma- to beta-globin gene switching using a mini construct in transgenic mice , 1992, Molecular and cellular biology.

[11]  E. Lewis,et al.  The 1991 Albert Lasker Medical Awards. Clusters of master control genes regulate the development of higher organisms. , 1992, JAMA.

[12]  Lewis Eb The 1991 Albert Lasker Medical Awards. Clusters of master control genes regulate the development of higher organisms. , 1992 .

[13]  Paolo Sassone-Corsi,et al.  More is better: Activators and repressors from the same gene , 1992, Cell.

[14]  F. Grosveld,et al.  Importance of globin gene order for correct developmental expression. , 1991, Genes & development.

[15]  D. Duboule,et al.  Murine genes related to the Drosophila AbdB homeotic genes are sequentially expressed during development of the posterior part of the body. , 1991, The EMBO journal.

[16]  C. Bartram,et al.  The proximal element of the beta globin locus control region is not functionally required in vivo. , 1991, The Journal of clinical investigation.

[17]  S. Swerdlow,et al.  A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis , 1991, Cell.

[18]  F. Grosveld,et al.  Hypersensitive site 4 of the human β globin locus control region , 1991 .

[19]  F. Grosveld,et al.  Human γ-globin genes silenced independently of other genes in the β-globin locus , 1991, Nature.

[20]  G. Stamatoyannopoulos,et al.  Autonomous developmental control of human embryonic globin gene switching in transgenic mice. , 1990, Science.

[21]  S. Orkin Globin gene regulation and switching: Circa 1990 , 1990, Cell.

[22]  J. D. Engel,et al.  Activity and tissue-specific expression of the transcription factor NF-E1 multigene family. , 1990, Genes & development.

[23]  W. C. Forrester,et al.  A deletion of the human beta-globin locus activation region causes a major alteration in chromatin structure and replication across the entire beta-globin locus. , 1990, Genes & development.

[24]  D. Shih,et al.  Developmentally regulated and erythroid-specific expression of the human embryonic beta-globin gene in transgenic mice. , 1990, Nucleic acids research.

[25]  F. Grosveld,et al.  Detailed analysis of the site 3 region of the human beta‐globin dominant control region. , 1990, The EMBO journal.

[26]  F. Grosveld,et al.  The beta‐globin dominant control region: hypersensitive site 2. , 1990, The EMBO journal.

[27]  F. Grosveld,et al.  DNaseI hypersensitive sites 1, 2 and 3 of the human beta-globin dominant control region direct position-independent expression. , 1990, Nucleic acids research.

[28]  F. Grosveld,et al.  beta-globin dominant control region interacts differently with distal and proximal promoter elements. , 1990, Genes & development.

[29]  G. Stamatoyannopoulos,et al.  Developmental regulation of human fetal-to-adult globin gene switching in transgenic mice , 1990, Nature.

[30]  R. Palmiter,et al.  Human gamma- to beta-globin gene switching in transgenic mice. , 1990, Genes & development.

[31]  J. D. Engel,et al.  The beta-globin stage selector element factor is erythroid-specific promoter/enhancer binding protein NF-E4. , 1989, Genes & development.

[32]  G. Superti-Furga,et al.  The deletion of the distal CCAAT box region of the A gamma-globin gene in black HPFH abolishes the binding of the erythroid specific protein NFE3 and of the CCAAT displacement protein. , 1989, Nucleic acids research.

[33]  M. Akam Hox and HOM: Homologous gene clusters in insects and vertebrates , 1989, Cell.

[34]  R. Krumlauf,et al.  The murine and Drosophila homeobox gene complexes have common features of organization and expression , 1989, Cell.

[35]  N. Martin,et al.  A single erythroid-specific DNase I super-hypersensitive site activates high levels of human beta-globin gene expression in transgenic mice. , 1989, Genes & development.

[36]  J. D. Engel,et al.  Developmental regulation of β-globin gene switching , 1988, Cell.

[37]  F. Grosveld,et al.  The human beta‐globin gene contains multiple regulatory regions: identification of one promoter and two downstream enhancers. , 1988, The EMBO journal.

[38]  G. Kollias,et al.  Position-independent, high-level expression of the human β-globin gene in transgenic mice , 1987, Cell.

[39]  W. C. Forrester,et al.  Evidence for a locus activation region: the formation of developmentally stable hypersensitive sites in globin-expressing hybrids. , 1987, Nucleic acids research.

[40]  F. Costantini,et al.  Upstream G gamma-globin and downstream beta-globin sequences required for stage-specific expression in transgenic mice , 1987, Molecular and cellular biology.

[41]  T. Ley,et al.  An enhancer element lies 3′ to the human A gamma globin gene. , 1987, The EMBO journal.

[42]  J. D. Engel,et al.  A 3′ enhancer is required for temporal and tissue-specific transcriptional activation of the chicken adult β-globin gene , 1986, Nature.

[43]  G. Kollias,et al.  Regulated expression of human A γ-, β-, and hybrid γβ-globin genes in transgenic mice: Manipulation of the developmental expression patterns , 1986, Cell.

[44]  J. Banerji,et al.  Expression of a β-globin gene is enhanced by remote SV40 DNA sequences , 1981, Cell.

[45]  T. Maniatis,et al.  Molecular cloning and characterization of the human β-like globin gene cluster , 1980, Cell.

[46]  F. Grosveld,et al.  Each hypersensitive site of the human beta-globin locus control region confers a different developmental pattern of expression on the globin genes. , 1993, Genes & development.

[47]  R. Roeder,et al.  The complexities of eukaryotic transcription initiation: regulation of preinitiation complex assembly. , 1991, Trends in biochemical sciences.

[48]  M. Grunstein,et al.  Nucleosomes: regulators of transcription. , 1990, Trends in genetics : TIG.

[49]  Charles R.scriver The Metabolic basis of inherited disease , 1989 .