Osmotic acclimation and turgor pressure regulation in algae

Salinity, together with light, temperature, and nutrients, is one of the abiotic factors affecting algal growth and distribution. Changes in salinity result in immediate water fluxes according to the osmotic gradients. This rapid response is followed by osmotic acclimation through adjustment of the cellular solute concentrations. As a result of these processes, a more or less constant turgor pressure is maintained or, in the case of wall-less cells, the cell volume is regained. Ions, mainly Na +, K +, and C1-, and low-molecular-weight organic compounds are the major osmolytes. Possible mechanisms of sensing turgor pressure and the signal transduction during osmotic acclimation, which most likely involve Ca 2+ , are discussed for microalgae and charophytes as examples. What Are Osmotic Acclimation and Turgor Pressure Regulation?

[1]  G O Kirst,et al.  Salinity Tolerance of Eukaryotic Marine Algae , 1990 .

[2]  V. Z. Lunevsky,et al.  Excitation ofCharaceae cell membranes as a result of activation of calcium and chloride channels , 1983, The Journal of Membrane Biology.

[3]  J. Gutknecht,et al.  Chloride transport and the membrane potential in the marine alga,Halicystis parvula , 1977, The Journal of Membrane Biology.

[4]  D. M. Dickson,et al.  The role of β-dimethylsulphoniopropionate, glycine betaine and homarine in the osmoacclimation of Platymonas subcordiformis , 1986, Planta.

[5]  M. Bisson,et al.  Osmotic adaptations of charophyte algae in the Coorong, South Australia and other Australian lakes , 1983, Hydrobiologia.

[6]  U. Zimmermann Physics of Turgor- and Osmoregulation , 1978 .

[7]  B. Antkowiak,et al.  Enflurane is a potent inhibitor of high conductance Ca2+‐activated K+' channels of Chara australis , 1992, FEBS letters.

[8]  C. Wiencke,et al.  Changes in the ultrastructure of Prasiola crispa ssp antarctica under salinity stress , 1992 .

[9]  G. Kirst,et al.  Ecophysiological investigations of Chara vulgaris L. grown in a brackish water lake: ionic changes and accumulation of sucrose in the vacuolar sap during sexual reproduction , 1988 .

[10]  C. Ashley,et al.  Free Ca2+ and cytoplasmic streaming in the alga Chara , 1982, Nature.

[11]  A. Cowan,et al.  Dunaliella salina: A model System for Studying the Response of Plant Cells to Stress , 1992 .

[12]  E. Neher,et al.  Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles , 1987, Nature.

[13]  M. Tazawa,et al.  Turgor Regulation in a Brackish Charophyte, Lamprothamnium succinctum II. Changes in K$, Na$ and Cl− Concentrations, Membrane Potential and Membrane Resistance during Turgor Regulation , 1984 .

[14]  L. Paleg,et al.  Water Stress in Plants. (Book Reviews: The Physiology and Biochemistry of Drought Resistance in Plants) , 1985 .

[15]  J. West,et al.  PHYSIOLOGICAL ECOTYPES IN THE MARINE ALGA BOSTRYCHIA RADICANS (CERAMIALES, RHODOPHYTA) FROM THE EAST COAST OF THE U.S.A 1 , 1994 .

[16]  M. Tazawa,et al.  Ca2+ ion reversibly inhibits the cytoplasmic streaming ofNitella , 1982, Protoplasma.

[17]  U. Karsten,et al.  Incomplete turgor pressure regulation in the “terrestial” red alga, Bostrychia scorpioides (Huds.) Mont. , 1989 .

[18]  John A. Raven,et al.  Energetics and Transport in Aquatic Plants , 1999 .

[19]  H. Kauss Some Aspects of Calcium-Dependent Regulation in Plant Metabolism , 1987 .

[20]  M. Beilby [27] Electrophysiology of giant algal cells , 1989 .

[21]  A. Weyand,et al.  The Chloride Sensitivity of Dunaliella parva Enzymes , 1984 .

[22]  G. Kirst,et al.  Aspects of Dimethylsulfoniopropionate Effects on Enzymes Isolated from the Marine Phytoplankter Tetraselmis subcordiformis (Stein) , 1991 .

[23]  A. Zamir,et al.  A Salt-Induced 60-Kilodalton Plasma Membrane Protein Plays a Potential Role in the Extreme Halotolerance of the Alga Dunaliella , 1994, Plant physiology.

[24]  P B Green,et al.  Metabolic and physical control of cell elongation rate: in vivo studies in nitella. , 1971, Plant physiology.

[25]  K. Kuroda,et al.  Artificial modification of the osmotic pressure of the plant cell , 1956, Protoplasma.

[26]  C. Wiencke,et al.  Growth, cell volume, and fine structure of Porphyra umbilicalis in relation to osmotic tolerance , 1980, Planta.

[27]  M. Tazawa,et al.  Calcium ion and turgor regulation in plant cells , 1990, The Journal of Membrane Biology.

[28]  T. Arakawa,et al.  The stabilization of proteins by osmolytes. , 1985, Biophysical journal.

[29]  A. Ben‐Amotz,et al.  Accumulation of metabolites by halotolerant algae and its industrial potential. , 1983, Annual review of microbiology.

[30]  M. Bisson,et al.  Chara buckellii, a euryhaline charophyte from an unusual saline environment. I. Osmotic relations at steady state , 1986 .

[31]  S. Hagiwara,et al.  Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells , 1989, Nature.

[32]  R. Reed The effects of extreme hyposaline stress upon Polysiphonia lanosa (L.) Tandy from marine and estuarine sites , 1984 .

[33]  C. Morris Mechanosensitive ion channels , 1990, The Journal of Membrane Biology.

[34]  M. Tazawa,et al.  Turgor Regulation in a Brackish Charophyte, Lamprothamnium succinctum I. Artificial Modification of Intracellular Osmotic Pressure , 1984 .

[35]  R. Benz,et al.  Transport properties of mobile charges in algal membranes: Influence of pH and turgor pressure , 1982, The Journal of Membrane Biology.

[36]  S. Tyerman,et al.  Ion channels in the plasma membrane of protoplasts from the halophytic angiosperm Zostera muelleri , 1994, The Journal of Membrane Biology.

[37]  M. Bisson,et al.  Osmoregulation or turgor regulation in chara? , 1984, Plant physiology.

[38]  D. Vučelič,et al.  Effects of D2O on permeation and gating in the Ca2+-activated potassium channel fromChara , 1993, The Journal of Membrane Biology.

[39]  H. Kauss Sensing of volume changes by poterioochromonas involves a ca-regulated system which controls activation of isofloridoside-phosphate synthase. , 1981, Plant physiology.

[40]  J. A. Hellebust,et al.  Release of intracellular glycerol and pore formation in Dunaliella tertiolecta exposed to hypotonic stress , 1992 .

[41]  M. E. Clark,et al.  Living with water stress: evolution of osmolyte systems. , 1982, Science.

[42]  C. Wiencke,et al.  ECOPHYSIOLOGY OF POLAR ALGAE , 1995 .

[43]  W. J. Lucas,et al.  Plant membrane transport: current conceptual issues. , 1980 .

[44]  M. Ginzburg Measurements of Ion Concentrations in Dunaliella parva Subjected to Hypertonic Shock , 1981 .

[45]  M. Tazawa,et al.  Increase in cytoplasmic calcium content in internodal cells of Lamprothamnium upon hypotonic treatment , 1987 .

[46]  F. Sachs,et al.  Characterization of stretch‐activated ion channels in Xenopus oocytes. , 1990, The Journal of physiology.

[47]  M. Beilby Factors controlling the K+ conductance inChara , 1986, The Journal of Membrane Biology.

[48]  K. Kiyosawa,et al.  The role of calcium in turgor regulation in Chara longifolia , 1995 .

[49]  R. Wayne,et al.  CALCIUM AND PLANT DEVELOPMENT , 1985 .

[50]  J. Carpenter,et al.  The mechanism of cryoprotection of proteins by solutes. , 1988, Cryobiology.

[51]  D. Hastings,et al.  Turgor Pressure Regulation: Modulation of Active Potassium Transport by Hydrostatic Pressure Gradients , 1974 .

[52]  J. Lockhart Physical nature of irreversible deformation of plant cells. , 1967, Plant physiology.

[53]  J. Simpson,et al.  Water relations of sugar-tolerant yeasts: the role of intracellular polyols. , 1972, Journal of general microbiology.

[54]  B. Schobert,et al.  Unusual solution properties of proline and its interaction with proteins. , 1978, Biochimica et biophysica acta.

[55]  E. Galinski Compatible solutes of halophilic eubacteria: molecular principles, water-solute interaction, stress protection , 1993, Experientia.

[56]  C. Wiencke,et al.  Incomplete turgor adjustment in Cladophora rupestrisunder fluctuating salinity regimes , 1992 .

[57]  G. Kirst,et al.  Biosynthesis of Photosynthates and Taxonomy of Algae , 1982 .

[58]  M. Saraste,et al.  FEBS Lett , 2000 .

[59]  J. Wolfe,et al.  Dynamics of membrane exchange of the plasma membrane and the lysis of isolated protoplasts during rapid expansions in area , 1985, The Journal of Membrane Biology.

[60]  U. Kishimoto,et al.  Role of calcium ion in the excitability and electrogenic pump activity of theChara corallina membrane: I. Effects of La3+, verapamil, EGTA, W-7, and TFP on the action potential , 1987, The Journal of Membrane Biology.

[61]  G. Kirst,et al.  Turgor pressure regulation in Chara aspera (Charophyta): the role of sucrose accumulation in fertile and sterile plants , 1992 .

[62]  R. Reed The osmotic responses of Polysiphonia lanosa (L.) Tandy from marine and estuarine sites: Evidence for incomplete recovery of turgor , 1983 .

[63]  G. Kirst,et al.  Salinity response of a freshwater charophyte, Chara vulgaris , 1990 .

[64]  J. A. Hellebust Mechanisms of response to salinity in halotolerant microalgae , 1985, Plant and Soil.

[65]  T. Shiina,et al.  Ca2+-activated Cl− channel in plasmalemma ofNitellopsis obtusa , 1987, The Journal of Membrane Biology.

[66]  J. Boyer,et al.  Enlargement in chara studied with a turgor clamp : growth rate is not determined by turgor. , 1992, Plant physiology.

[67]  A. Hanson,et al.  Prokaryotic osmoregulation: genetics and physiology. , 1991, Annual review of microbiology.

[68]  D. F. E. Richter,et al.  d-Mannitol dehydrogenase and d-mannitol-1-phosphate dehydrogenase in Platymonas subcordiformis: some characteristics and their role in osmotic adaptation , 1987, Planta.

[69]  D. M. Dickson,et al.  Osmotic adaptation in Ulva lactuca under fluctuating salinity regimes , 1982, Planta.

[70]  F Sachs,et al.  Stretch‐activated single ion channel currents in tissue‐cultured embryonic chick skeletal muscle. , 1984, The Journal of physiology.

[71]  G. Kirst Coordination of ionic relations and mannitol concentrations in the euryhaline unicellular alga, Platymonas subcordiformis (Hazen) after osmotic shocks , 2004, Planta.

[72]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[73]  K. Strange,et al.  Cellular and Molecular Physiology of Cell Volume Regulation , 1993 .

[74]  B. Pickard,et al.  A stretch‐activated anion channel in tobacco protoplasts , 1988, FEBS letters.