Nystr\"om methods for high-order CQ solutions of the wave equation in two dimensions

We investigate high-order Convolution Quadratures methods for the solution of the wave equation in unbounded domains in two dimensions that rely on Nyström discretizations for the solution of the ensemble of associated Laplace domain modified Helmholtz problems. We consider two classes of CQ discretizations, one based on linear multistep methods and the other based on Runge-Kutta methods, in conjunction with Nyström discretizations based on Alpert and QBX quadratures of Boundary Integral Equation (BIE) formulations of the Laplace domain Helmholtz problems with complex wavenumbers. We present a variety of accuracy tests that showcase the high-order in time convergence (up to and including fifth order) that the Nyström CQ discretizations are capable of delivering for a variety of two dimensional scatterers and types of boundary conditions.

[1]  Johan Helsing,et al.  Corner singularities for elliptic problems: Integral equations, graded meshes, quadrature, and compressed inverse preconditioning , 2008, J. Comput. Phys..

[2]  E. Michielssen,et al.  Time domain adaptive integral method for surface integral equations , 2004, IEEE Transactions on Antennas and Propagation.

[3]  Oscar P. Bruno,et al.  High-order, Dispersionless "Fast-Hybrid" Wave Equation Solver. Part I: O(1) Sampling Cost via Incident-Field Windowing and Recentering , 2020, SIAM J. Sci. Comput..

[4]  A. Bendali,et al.  Extension to Nonconforming Meshes of the Combined Current and Charge Integral Equation , 2012, IEEE Transactions on Antennas and Propagation.

[5]  Ya Yan Lu,et al.  Efficient high order waveguide mode solvers based on boundary integral equations , 2014, J. Comput. Phys..

[6]  J. Bremer On the Nyström discretization of integral equations on planar curves with corners , 2012 .

[7]  Leslie Greengard,et al.  High-order discretization of a stable time-domain integral equation for 3D acoustic scattering , 2019, J. Comput. Phys..

[8]  Carlos Pérez-Arancibia,et al.  Convolution quadrature methods for time-domain scattering from unbounded penetrable interfaces , 2018, Proceedings of the Royal Society A.

[9]  Rainer Kress,et al.  On the numerical solution of a hypersingular integral equation in scattering theory , 1995 .

[10]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[11]  Jens Markus Melenk,et al.  Runge–Kutta convolution quadrature for operators arising in wave propagation , 2011, Numerische Mathematik.

[12]  Francisco-Javier Sayas,et al.  A Nyström flavored Calderón Calculus of order three for two dimensional waves, time-harmonic and transient , 2014, Comput. Math. Appl..

[13]  A. Bamberger et T. Ha Duong,et al.  Formulation variationnelle espace‐temps pour le calcul par potentiel retardé de la diffraction d'une onde acoustique (I) , 1986 .

[14]  Francisco-Javier Sayas,et al.  Retarded Potentials and Time Domain Boundary Integral Equations: A Road Map , 2016 .

[15]  Lars Mönch,et al.  On the numerical solution of a hypersingular integral equation for elastic scattering from a planar crack , 2000 .

[16]  M. Taskinen,et al.  Current and charge Integral equation formulation , 2006, IEEE Transactions on Antennas and Propagation.

[17]  Leslie Greengard,et al.  Quadrature by expansion: A new method for the evaluation of layer potentials , 2012, J. Comput. Phys..

[18]  Lehel Banjai,et al.  Multistep and Multistage Convolution Quadrature for the Wave Equation: Algorithms and Experiments , 2010, SIAM J. Sci. Comput..

[19]  Michael Siegel,et al.  A local target specific quadrature by expansion method for evaluation of layer potentials in 3D , 2017, J. Comput. Phys..

[20]  Erich Martensen,et al.  Über eine Methode zum räumlichen Neumannschen Problem mit einer Anwendung für torusartige Berandungen , 1963 .

[21]  Bradley K. Alpert,et al.  Hybrid Gauss-Trapezoidal Quadrature Rules , 1999, SIAM J. Sci. Comput..

[22]  Akash Anand,et al.  Well conditioned boundary integral equations for two-dimensional sound-hard scattering problems in domains with corners , 2012 .

[23]  Timo Betcke,et al.  Overresolving in the Laplace Domain for Convolution Quadrature Methods , 2016, SIAM J. Sci. Comput..

[24]  Francisco-Javier Sayas,et al.  A fully discrete Calderon Calculus for two dimensional time harmonic waves , 2012, 1210.7017.

[25]  Lehel Banjai,et al.  Rapid Solution of the Wave Equation in Unbounded Domains , 2008, SIAM J. Numer. Anal..

[26]  Yassine Boubendir,et al.  Wave-number estimates for regularized combined field boundary integral operators in acoustic scattering problems with Neumann boundary conditions , 2013 .

[27]  Per-Gunnar Martinsson,et al.  High-order accurate methods for Nyström discretization of integral equations on smooth curves in the plane , 2014, Adv. Comput. Math..

[28]  Francisco-Javier Sayas,et al.  A fully discrete Calderón calculus for the two-dimensional elastic wave equation , 2014, Comput. Math. Appl..

[29]  C. Turc,et al.  Well-posed boundary integral equation formulations and Nystr\"om discretizations for the solution of Helmholtz transmission problems in two-dimensional Lipschitz domains , 2015, 1509.04415.

[30]  Johan Helsing,et al.  An Extended Charge-Current Formulation of the Electromagnetic Transmission Problem , 2020, SIAM J. Appl. Math..

[31]  Oscar P. Bruno,et al.  Second‐kind integral solvers for TE and TM problems of diffraction by open arcs , 2012, 1204.3701.

[32]  Charles L. Epstein,et al.  Debye Sources and the Numerical Solution of the Time Harmonic Maxwell Equations II , 2008, 0808.3369.

[33]  Rainer Kress,et al.  A Nyström method for boundary integral equations in domains with corners , 1990 .

[34]  V. Domínguez,et al.  Dirac delta methods for Helmholtz transmission problems , 2008, Adv. Comput. Math..