Passive States Optimize the Output of Bosonic Gaussian Quantum Channels

An ordering between the quantum states emerging from a single-mode gauge-covariant bosonic Gaussian channel is proved. Specifically, we show that within the set of input density matrices with the same given spectrum, the element passive with respect to the Fock basis (i.e., diagonal with decreasing eigenvalues) produces an output, which majorizes all the other outputs emerging from the same set. When applied to pure input states, our finding includes as a special case the result of Mari et al., Nat. Comm. 5, 3826 (2014) which implies that the output associated to the vacuum majorizes the others.

[1]  Oliver Johnson,et al.  Monotonicity, Thinning, and Discrete Versions of the Entropy Power Inequality , 2009, IEEE Transactions on Information Theory.

[2]  K. Modi,et al.  Quantum thermodynamics of general quantum processes. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Saikat Guha,et al.  Classical Information Capacity of the Bosonic Broadcast Channel , 2007, 2007 IEEE International Symposium on Information Theory.

[4]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[5]  Yaming Yu,et al.  Monotonic Convergence in an Information-Theoretic Law of Small Numbers , 2008, IEEE Transactions on Information Theory.

[6]  Saikat Guha,et al.  Information trade-offs for optical quantum communication , 2012, Physical review letters.

[7]  S. Wehner,et al.  A strong converse for classical channel coding using entangled inputs. , 2009, Physical review letters.

[8]  Saikat Guha,et al.  Quantum trade-off coding for bosonic communication , 2011, ArXiv.

[9]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[10]  A. Holevo,et al.  Majorization and additivity for multimode bosonic Gaussian channels , 2014, 1405.4066.

[11]  Oliver Johnson,et al.  Concavity of entropy under thinning , 2009, 2009 IEEE International Symposium on Information Theory.

[12]  S. Lloyd,et al.  Multimode quantum entropy power inequality , 2014, 1408.6410.

[13]  R. Simon,et al.  Operator-sum representation for bosonic Gaussian channels , 2010, 1012.4266.

[14]  Fuzhen Zhang,et al.  Inequalities: Theory of Majorization and Its Applications (Springer Series in Statistics) by Albert W. Marshall, Ingram Olkin and Barry C. Arnold, 2nd edition, Springer (2011) xxvii+909 pp, Hardback, ISBN 978-0-387-40087-7; e-ISBN 978-0-387-68276-1 , 2012 .

[15]  R. Konig,et al.  The Entropy Power Inequality for Quantum Systems , 2012, IEEE Transactions on Information Theory.

[16]  Paul Skrzypczyk,et al.  The role of quantum information in thermodynamics—a topical review , 2015, 1505.07835.

[17]  Saikat Guha,et al.  Capacity of the bosonic wiretap channel and the Entropy Photon-Number Inequality , 2008, 2008 IEEE International Symposium on Information Theory.

[18]  Oliver Johnson,et al.  Thinning and the Law of Small Numbers , 2007, 2007 IEEE International Symposium on Information Theory.

[19]  K. Fan,et al.  Maximum Properties and Inequalities for the Eigenvalues of Completely Continuous Operators. , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[20]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[21]  S. Lloyd,et al.  Majorization theory approach to the Gaussian channel minimum entropy conjecture. , 2011, Physical review letters.

[22]  A. Holevo,et al.  Quantum state majorization at the output of bosonic Gaussian channels , 2013, Nature Communications.

[23]  F. Baccelli,et al.  Characterization of Poisson Processes , 1987 .

[24]  J. Anders,et al.  Quantum thermodynamics , 2015, 1508.06099.

[25]  A. Lenard Thermodynamical proof of the Gibbs formula for elementary quantum systems , 1978 .

[26]  W. Pusz,et al.  Passive states and KMS states for general quantum systems , 1978 .

[27]  A. Holevo,et al.  Ultimate classical communication rates of quantum optical channels , 2014, Nature Photonics.

[28]  Oliver Johnson,et al.  Thinning, Entropy, and the Law of Thin Numbers , 2009, IEEE Transactions on Information Theory.

[29]  J. Shapiro,et al.  Classical capacity of bosonic broadcast communication and a minimum output entropy conjecture , 2007, 0706.3416.

[30]  Graeme Smith,et al.  Limits on classical communication from quantum entropy power inequalities , 2012, Nature Photonics.

[31]  Donal O'Shea,et al.  Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.

[32]  W. Pusz,et al.  Passive states for finite classical systems , 1980 .

[33]  A. Holevo Gaussian optimizers and the additivity problem in quantum information theory , 2015, 1501.00652.

[34]  Alexander S. Holevo,et al.  One-mode quantum Gaussian channels: Structure and quantum capacity , 2007, Probl. Inf. Transm..

[35]  A. Wehrl How chaotic is a state of a quantum system , 1973 .

[36]  A. Holevo,et al.  A Solution of Gaussian Optimizer Conjecture for Quantum Channels , 2015 .

[37]  V. Giovannetti,et al.  A generalization of the entropy power inequality to bosonic quantum systems , 2014, 1402.0404.

[38]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .

[39]  Saikat Guha,et al.  The Entropy Photon-Number Inequality and its consequences , 2007, 2008 Information Theory and Applications Workshop.