ITER Relevant High Heat Flux Testing on Plasma Facing Surfaces

The current ITER design employs beryllium, carbon fiber reinforced composite and tungsten as plasma facing materials. Since these materials are exposed to high heat fluxes during the operation, it is essential to perform high heat flux tests for R&D of ITER components. Static heat loads corresponding to cycling loads during normal operation, are estimated to be up to 20 MW/m 2 in the divertor targets and around 0.5 MW/m 2 at the first wall in ITER. For the static high heat flux testing, tests in electron beam facilities, particle beam facilities, IR heater and in-pile tests have been performed. Another type, more critical heat loads, which have high power densities and short durations, corresponding to transient events, i.e. plasma disruption, vertical displacement events (VDEs) and edge localized modes (ELMs) deliver considerable heat flux onto the plasma facing materials. For this purpose, tests in electron beam (short pulses), plasma gun and high power laser facilities have been carried out. The present work summarizes the features of these facilities and recent experimental results as well as the current selection of ITER plasma facing components.

[1]  M. Merola,et al.  EU Development of High Heat Flux Components , 2005 .

[2]  S. Suzuki,et al.  Development of ITER Divertor Vertical Target with Annular Flow Concept—I: Thermal-Hydraulic Characteristics of Annular Swirl Tube , 2004 .

[3]  K. Ezato,et al.  Thermal fatigue experiment of screw cooling tube under one-sided heating condition , 2004 .

[4]  Masashi Hasegawa,et al.  Current status of ductile tungsten alloy development by mechanical alloying , 2004 .

[5]  L. Singheiser,et al.  Formation of dust particles under the influence of intense thermal loads , 2004 .

[6]  K. Shimizu,et al.  Manufacturing study of Be, W and CFC bonded structures for plasma-facing components , 2004 .

[7]  S. Suzuki,et al.  Synergistic effects of high heat loading and helium irradiation of tungsten , 2004 .

[8]  M. Ferraris,et al.  Direct joining of CFC to copper , 2004 .

[9]  H. Kawamura,et al.  Heat load test of beryllium and CuCrZr joints , 2004 .

[10]  Kazuyoshi Sato,et al.  Overview on materials R&D activities in Japan towards ITER construction and operation , 2004 .

[11]  L. Singheiser,et al.  Performance of Plasma-Facing Materials Under Intense Thermal Loads in Tokamaks and Stellarators , 2004 .

[12]  J. Linke,et al.  Detection of Heat Transfer Properties of CFC-Plasma Facing Components by IR-Observation and High Heat Flux Testing , 2004 .

[13]  L. Singheiser,et al.  Brittle Destruction of Carbon Based Materials , 2004 .

[14]  A. Durocher,et al.  A New Inspection Method for Plasma Facing Components , 2004 .

[15]  S. Brezinsek,et al.  Particle Release from Carbon Based Materials under Intense Transient Heat Loads , 2004 .

[16]  J. Linke,et al.  Energy Threshold of Brittle Destruction for Carbon-Based Materials , 2004 .

[17]  C. H. Wu,et al.  Development of Carbon Materials and Plasma Facing Components for ITER , 2004 .

[18]  Gerald Pintsuk,et al.  Integration eines funktionell gradierten W/Cu-Übergangs für Divertorkomponenten von Fusionsanlagen , 2004 .

[19]  Johannes Roth,et al.  Key issues in plasma-wall interactions for ITER: a European approach , 2003 .

[20]  C. Boudot,et al.  Manufacture of two primary first wall panel prototypes with Beryllium armor for ITER , 2003 .

[21]  M. Merola,et al.  European contribution to the development of the ITER divertor , 2003 .

[22]  J. Linke,et al.  Brittle destruction of carbon-based materials in transient heat load tests , 2003 .

[23]  M. Ferraris,et al.  Joining of C/C composites to copper , 2003 .

[24]  Final design of W7-X divertor plasma facing components—tests and thermo-mechanical analysis of baffle prototypes , 2003 .

[25]  S. E. Brünings,et al.  Development of W/Cu—functionally graded materials☆ , 2003 .

[26]  B. Kolbasov,et al.  Erosion products of ITER divertor materials under plasma disruption simulation , 2003 .

[27]  P. Lorenzetto,et al.  Progress on fatigue characterization of ITER primary first wall mock-ups , 2003 .

[28]  Light emission from carbon-based materials under ITER relevant thermal shock loads , 2003 .

[29]  David A. Petti,et al.  Oxygen Reactivity of a Carbon Fiber Composite , 2003 .

[30]  P. Barabaschi,et al.  Key ITER plasma edge and plasma–material interaction issues , 2003 .

[31]  C. H. Wu,et al.  Material/Plasma Surface Interaction Issues Following Neutron Damage , 2003 .

[32]  Yan Jian-cheng Research of High Heat Flux for Divertor Materials , 2003 .

[33]  Patrick,et al.  Acoustic emission studies on fracture behaviour of CFC-materials under various loads , 2003 .

[34]  M. Merola,et al.  Overview on fabrication and joining of plasma facing and high heat flux materials for ITER , 2002 .

[35]  D. Gosset,et al.  Simulation Experimental Investigation of Plasma Off-Normal Events on Advanced Silicon Doped CFC-NS31 , 2002 .

[36]  G. Hofmann,et al.  Characterisation and thermal loading of low- Z coatings for the first wall of W7-X , 2002 .

[37]  M. Enoeda,et al.  Development of Be/DSCu HIP bonding and thermo-mechanical evaluation , 2002 .

[38]  K. Ezato,et al.  Non-destructive testing of CFC monoblock divertor mock-ups , 2002 .

[39]  R. Aymar,et al.  ITER status, design and material objectives , 2002 .

[40]  G. Piazza,et al.  Erosion mechanism and erosion products in carbon-based materials , 2002 .

[41]  H. Kawamura,et al.  Heat load test of Be/Cu joint for ITER first wall mock-ups , 2002 .

[42]  K. Ezato,et al.  Disruption tests on repaired tungsten by CVD coating , 2002 .

[43]  F. Escourbiac,et al.  Non-destructive testing of divertor components , 2002 .

[44]  P. Lorenzetto,et al.  Status of fabrication development for plasma facing components in the EU , 2002 .

[45]  D. Zito,et al.  Thermal-Mechanical Test on ITER Primary First Wall Mock-Ups , 2002 .

[46]  V. Belyakov,et al.  Overview of fusion nuclear technology in Russia , 2002 .

[47]  R. Nygren Actively cooled plasma facing components for long pulse high power operation , 2002 .

[48]  C. H. Skinner,et al.  Plasma{material interactions in current tokamaks and their implications for next step fusion reactors , 2001 .

[49]  F. Escourbiac,et al.  European achievements for ITER high heat flux components , 2001 .

[50]  S. Suzuki,et al.  Critical heat flux test on saw-toothed fin duct under one-sided heating conditions , 2001 .

[51]  H. Kawamura,et al.  High heat load tests of neutron-irradiated divertor mockups , 2001 .

[52]  R. Tivey,et al.  ITER R&D: Vacuum Vessel and In-Vessel Components: Divertor Cassette , 2001 .

[53]  W. Dänner,et al.  ITER R&D: Vacuum vessel and in-vessel components: Shield blanket module , 2001 .

[54]  Kazuyuki Nakamura,et al.  Disruption Erosion Tests on La2O3 Containing Tungsten Material , 2001 .

[55]  V. Titov,et al.  Study of brittle destruction and erosion mechanisms of carbon-based materials during plasma instabilities , 2001 .

[56]  R. Duwe,et al.  Material degradation and particle formation under transient thermal loads , 2001 .

[57]  V. Safronov,et al.  Material erosion and erosion products under plasma heat loads typical for ITER hard disruptions , 2001 .

[58]  S. Tähtinen,et al.  Ultrasonic and metallographic examination of ITER vertical target prototype , 2001 .

[59]  R. Duwe,et al.  Carbon particles emission, brittle destruction and co-deposit formation: experience from electron beam experiments and controlled fusion devices , 2001 .

[60]  H. Würz,et al.  Brittle destruction of carbon based materials under off-normal ITER-FEAT conditions , 2001 .

[61]  F. Escourbiac,et al.  Manufacturing and testing of a prototypical divertor vertical target for ITER , 2000 .

[62]  R. Duwe,et al.  High Heat Flux Simulation Experiments with Improved Electron Beam Diagnostics , 2000 .

[63]  V. Philipps,et al.  Application of tungsten for plasma limiters in TEXTOR , 2000 .

[64]  H. Kawamura,et al.  Erosion characteristics of neutron-irradiated carbon-based materials under simulated disruption heat loads , 2000 .

[65]  I. Mazul,et al.  Development of alternative methods for surface thermal loading simulation , 2000 .

[66]  T. Hino,et al.  Japanese developments of fusion reactor plasma facing components , 2000 .

[67]  M. Merola,et al.  Manufacturing of a full scale baffle prototype for ITER with a CFC and W plasma spray armour , 2000 .

[68]  V. Safronov,et al.  Material erosion and erosion products in disruption simulation experiments at the MK-200 UG facility , 2000 .

[69]  N. Noda,et al.  High heat flux test of actively cooled tungsten-coated carbon divertor mock-ups , 2000 .

[70]  Pornthep Chivavibul,et al.  Non-contact measurement of acoustic emission in materials by laser interferometry , 2000 .

[71]  I. Mazul,et al.  Comparative thermal cyclic test of different beryllium grades previously subjected to simulated disruption loads , 1999 .

[72]  M. Seki ITER and beyond , 1999 .

[73]  Hiroaki Kurishita,et al.  Microstructure and impact properties of ultra-fine grained tungsten alloys dispersed with TiC , 1999 .

[74]  R. Duwe,et al.  Testing of Neutron-Irradiated Plasma Facing Components , 1999 .

[75]  H. Kawamura,et al.  Thermal Shock Test of Neutron Irradiated Carbon Fiber Reinforced Carbon Composites with OHBIS , 1999 .

[76]  J. Linke,et al.  Emission of Solid Particles from Carbon Materials under Pulsed Surface Heat Loads , 1999 .

[77]  P. Lorenzetto,et al.  Main achievements of the EU HT test programme of ITER primary wall small scale mock ups , 1998 .

[78]  H. Pacher,et al.  Carbon fiber composites application in ITER plasma facing components , 1998 .

[79]  Kazuyuki Nakamura,et al.  Disruption and sputtering erosions on SiC doped CFC , 1998 .

[80]  H. Grote,et al.  Overview of EU CFCs development for plasma facing materials , 1998 .

[81]  R. Neu,et al.  Performance of tungsten coatings as plasma facing components used in ASDEX Upgrade , 1998 .

[82]  Dennis L. Youchison,et al.  Fabrication and high heat flux testing of plasma sprayed beryllium ITER first wall mock-ups , 1998 .

[83]  G. Vieider,et al.  Development of tungsten armor and bonding to copper for plasma-interactive components , 1998 .

[84]  A. A. Gervash,et al.  Comparative thermal cyclic testing and strength investigation of different Be/Cu joints , 1998 .

[85]  Kazuyuki Nakamura,et al.  Disruption erosions of various kinds of tungsten , 1998 .

[86]  Kazuyuki Nakamura,et al.  Thermal fatigue tests on CVD-W/Cu divertor mock-ups , 1998 .

[87]  K. Hollis,et al.  The effect of substrate temperature on the thermal diffusivity and bonding characteristics of plasma sprayed beryllium , 1997 .

[88]  P. Chappuis,et al.  EVOLUTION OF FRAMATOME AND CEA HIGH THERMAL FLUX STATION FOR FUSION TECHNOLOGY EXPERIMENTS NEEDS , 1997 .

[89]  A. D. Muzichenko,et al.  Features of dynamics and structure of the shielding layer at the interaction of plasma flow with target , 1996 .

[90]  H. Kawamura,et al.  New electron beam facility for irradiated plasma facing materials testing in hot cell , 1996 .

[91]  V. Safronov,et al.  Study of structure and dynamics of shielding layer for inclined incidence of plasma stream at MK-200 facility. , 1996 .

[92]  G. Tartaglia,et al.  Low temperature irradiation experiments and material testing in Petten , 1996 .

[93]  C. García-Rosales,et al.  Manufacturing and high heat flux loading of tungsten coatings on fine grain graphite for the ASDEX-Upgrade divertor , 1996 .

[94]  K. E. Elliott,et al.  Optimizing the thermal conductivity of vacuum plasma-sprayed beryllium for fusion applications , 1995 .

[95]  J. Laan,et al.  Material erosion and surface temperature response to plasma-disruption heat load simulations☆ , 1995 .

[96]  T. Muroga,et al.  High-heat-flux experiment on plasma-facing materials by electron beam irradiation , 1994 .

[97]  S. Menzel,et al.  Thermal shock behaviour of various first-wall materials under simulation load tests by laser beam irradiation , 1994 .

[98]  M. Seki,et al.  Performance of jaeri electron beam irradiation stand , 1991 .

[99]  J. Laan Effects of pulsed-laser radiation on first-wall materials , 1989 .