An ER Complex of ODR-4 and ODR-8/Ufm1 Specific Protease 2 Promotes GPCR Maturation by a Ufm1-Independent Mechanism

Despite the importance of G-protein coupled receptors (GPCRs) their biogenesis is poorly understood. Like vertebrates, C. elegans uses a large family of GPCRs as chemoreceptors. A subset of these receptors, such as ODR-10, requires the odr-4 and odr-8 genes to be appropriately localized to sensory cilia. The odr-4 gene encodes a conserved tail-anchored transmembrane protein; the molecular identity of odr-8 is unknown. Here, we show that odr-8 encodes the C. elegans ortholog of Ufm1-specific protease 2 (UfSP2). UfSPs are cysteine proteases identified biochemically by their ability to liberate the ubiquitin-like modifier Ufm1 from its pro-form and protein conjugates. ODR-8/UfSP2 and ODR-4 are expressed in the same set of twelve chemosensory neurons, and physically interact at the ER membrane. ODR-4 also binds ODR-10, suggesting that an ODR-4/ODR-8 complex promotes GPCR folding, maturation, or export from the ER. The physical interaction between human ODR4 and UfSP2 suggests that this complex's role in GPCR biogenesis may be evolutionarily conserved. Unexpectedly, mutant versions of ODR-8/UfSP2 lacking catalytic residues required for protease activity can rescue all odr-8 mutant phenotypes tested. Moreover, deleting C. elegans ufm-1 does not alter chemoreceptor traffic to cilia, either in wild type or in odr-8 mutants. Thus, UfSP2 proteins have protease- and Ufm1-independent functions in GPCR biogenesis.

[1]  Mario de Bono,et al.  Experience-Dependent Modulation of C. elegans Behavior by Ambient Oxygen , 2005, Current Biology.

[2]  S. Slaugenhaupt,et al.  Caenorhabditis elegans functional orthologue of human protein h-mucolipin-1 is required for lysosome biogenesis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[3]  E. Liebau,et al.  The Ubiquitin-fold Modifier 1 (Ufm1) Cascade of Caenorhabditis elegans , 2013, The Journal of Biological Chemistry.

[4]  B. Bukau,et al.  Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. , 2010, Molecular cell.

[5]  J. Bonifacino,et al.  Deubiquitinases Sharpen Substrate Discrimination during Membrane Protein Degradation from the ER , 2013, Cell.

[6]  J. Brodsky,et al.  Dissecting the ER-Associated Degradation of a Misfolded Polytopic Membrane Protein , 2008, Cell.

[7]  Guangyu Wu,et al.  The regulatory mechanisms of export trafficking of G protein-coupled receptors. , 2005, Cellular signalling.

[8]  M. Cheetham,et al.  Pharmacological manipulation of rhodopsin retinitis pigmentosa. , 2010, Advances in experimental medicine and biology.

[9]  Cori Bargmann,et al.  Natural Variation in a Neuropeptide Y Receptor Homolog Modifies Social Behavior and Food Response in C. elegans , 1998, Cell.

[10]  F. Echeverri,et al.  Endoplasmic Reticulum Retention, Degradation, and Aggregation of Olfactory G‐Protein Coupled Receptors , 2003, Traffic.

[11]  James H. Thomas,et al.  The Caenorhabditis chemoreceptor gene families , 2008, BMC Biology.

[12]  I. Nabi,et al.  Association of calnexin with wild type and mutant AVPR2 that causes nephrogenic diabetes insipidus. , 2001, Biochemistry.

[13]  Keiji Tanaka,et al.  Structural basis for Ufm1 processing by UfSP1 , 2008 .

[14]  P. Muchowski,et al.  Modulation of neurodegeneration by molecular chaperones , 2005, Nature Reviews Neuroscience.

[15]  T. Rapoport,et al.  Mechanisms of Sec61/SecY-mediated protein translocation across membranes. , 2012, Annual review of biophysics.

[16]  S. Edwards,et al.  Impaired dense core vesicle maturation in Caenorhabditis elegans mutants lacking Rab2 , 2009, The Journal of cell biology.

[17]  Harumi Saito,et al.  RTP Family Members Induce Functional Expression of Mammalian Odorant Receptors , 2004, Cell.

[18]  H. Sasakawa,et al.  Solution structure and dynamics of Ufm1, a ubiquitin-fold modifier 1. , 2006, Biochemical and biophysical research communications.

[19]  R. Hardie,et al.  XPORT-Dependent Transport of TRP and Rhodopsin , 2011, Neuron.

[20]  Cori Bargmann,et al.  Social feeding in Caenorhabditis elegans is induced by neurons that detect aversive stimuli , 2002, Nature.

[21]  Cornelia I Bargmann,et al.  Odorant Receptor Localization to Olfactory Cilia Is Mediated by ODR-4, a Novel Membrane-Associated Protein , 1998, Cell.

[22]  J. Yates,et al.  TFG-1 function in protein secretion and oncogenesis. , 2011, Nature cell biology.

[23]  W. Wood The Nematode Caenorhabditis elegans , 1988 .

[24]  C. Bullock,et al.  Regulation of transport of the dopamine D1 receptor by a new membrane-associated ER protein , 2001, Nature Cell Biology.

[25]  Cori Bargmann,et al.  Polarized Dendritic Transport and the AP-1 μ1 Clathrin Adaptor UNC-101 Localize Odorant Receptors to Olfactory Cilia , 2001, Neuron.

[26]  C. Kenyon,et al.  The nematode Caenorhabditis elegans. , 1988, Science.

[27]  D. Hirsh,et al.  Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. , 1999, Molecular biology of the cell.

[28]  J. Kaplan,et al.  UNC-108/Rab2 regulates postendocytic trafficking in Caenorhabditis elegans. , 2008, Molecular biology of the cell.

[29]  H. Ovaa,et al.  Two Novel Ubiquitin-fold Modifier 1 (Ufm1)-specific Proteases, UfSP1 and UfSP2* , 2007, Journal of Biological Chemistry.

[30]  J. Brodsky Cleaning Up: ER-Associated Degradation to the Rescue , 2012, Cell.

[31]  C. Zuker,et al.  The cyclophilin homolog ninaA is a tissue-specific integral membrane protein required for the proper synthesis of a subset of Drosophila rhodopsins , 1991, Cell.

[32]  P. Conn,et al.  Molecular basis of hypogonadotropic hypogonadism: restoration of mutant (E(90)K) GnRH receptor function by a deletion at a distant site. , 2002, The Journal of clinical endocrinology and metabolism.

[33]  D. Mizrachi,et al.  Intracellularly located misfolded glycoprotein hormone receptors associate with different chaperone proteins than their cognate wild-type receptors. , 2004, Molecular endocrinology.

[34]  Cori Bargmann,et al.  odr-10 Encodes a Seven Transmembrane Domain Olfactory Receptor Required for Responses to the Odorant Diacetyl , 1996, Cell.

[35]  A. Radzikowski,et al.  Nephrogenic Diabetes Insipidus , 1963, Pediatric clinics of North America.

[36]  M. Grossmann,et al.  G Protein-coupled Receptors , 1998, The Journal of Biological Chemistry.

[37]  C. Hurt,et al.  Systematic and quantitative analysis of G protein-coupled receptor trafficking motifs. , 2013, Methods in enzymology.

[38]  D. Hall,et al.  Targeting of rough endoplasmic reticulum membrane proteins and ribosomes in invertebrate neurons. , 2002, Molecular biology of the cell.

[39]  P. Novick,et al.  GTPase networks in membrane traffic. , 2012, Annual review of biochemistry.

[40]  Keiji Tanaka,et al.  Structure of Ubiquitin-fold Modifier 1-specific Protease UfSP2* , 2011, The Journal of Biological Chemistry.

[41]  Mario de Bono,et al.  Behavioral Motifs and Neural Pathways Coordinating O2 Responses and Aggregation in C. elegans , 2006, Current Biology.

[42]  Paul M. Jenkins,et al.  The AP-1 clathrin adaptor facilitates cilium formation and functions with RAB-8 in C. elegans ciliary membrane transport , 2010, Journal of Cell Science.

[43]  S. Husson,et al.  UNC-108/RAB-2 and its effector RIC-19 are involved in dense core vesicle maturation in Caenorhabditis elegans , 2009, The Journal of cell biology.

[44]  Cori Bargmann,et al.  Odorant-selective genes and neurons mediate olfaction in C. elegans , 1993, Cell.

[45]  M. de Bono,et al.  Efficient genome editing in Caenorhabditis elegans by CRISPR-targeted homologous recombination , 2013, Nucleic acids research.

[46]  M. Kasahara,et al.  A Novel Type of E3 Ligase for the Ufm1 Conjugation System* , 2009, The Journal of Biological Chemistry.

[47]  J. Priess,et al.  Genetic analysis of lysosomal trafficking in Caenorhabditis elegans. , 2005, Molecular biology of the cell.

[48]  Cori Bargmann,et al.  Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans , 1995, Cell.

[49]  M. Babu,et al.  Molecular signatures of G-protein-coupled receptors , 2013, Nature.

[50]  E. Jorgensen,et al.  The C.elegans ric‐3 gene is required for maturation of nicotinic acetylcholine receptors , 2002, The EMBO journal.

[51]  Keiji Tanaka,et al.  A novel protein‐conjugating system for Ufm1, a ubiquitin‐fold modifier , 2004, The EMBO journal.