Insect motion detectors matched to visual ecology

TO detect motion, primates, birds and insects all use local detectors to correlate signals sampled at one location in the image with those sampled after a delay at adjacent locations1–10. These detectors can adapt to high image velocities by shortening the delay11–13. To investigate whether they use long delays for detecting low velocities, we compared motion-sensitive neurons in ten species of fast-flying insects, some of which encounter low velocities while hovering. Neurons of bee-flies and hawkmoths, which hover, are tuned to lower temporal frequencies than those of butterflies and bumblebees, which do not. Tuning to low frequencies indicates longer delays and extends sensitivity to lower velocities. Hoverflies retain fast temporal tuning but use their high spatial acuity for sensing low-velocity motion. Thus an unexpectedly wide range of spatio-temporal tuning matches motion detection to visual ecology.

[1]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[2]  W. Reichardt Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems , 1957 .

[3]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[4]  D. H. Kelly Motion and vision. II. Stabilized spatio-temporal threshold surface. , 1979, Journal of the Optical Society of America.

[5]  D. Burr,et al.  Contrast sensitivity at high velocities , 1982, Vision Research.

[6]  R. Shapley,et al.  Photoreception and Vision in Invertebrates , 1984, NATO ASI Series.

[7]  Erich Buchner,et al.  Behavioural Analysis of Spatial Vision in Insects , 1984 .

[8]  J. van Santen,et al.  Elaborated Reichardt detectors. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[9]  D. Burr,et al.  Spatial and temporal selectivity of the human motion detection system , 1985, Vision Research.

[10]  Martin Egelhaaf,et al.  Neural Mechanisms of Visual Course Control in Insects , 1989 .

[11]  Alexander Borst,et al.  Principles of visual motion detection , 1989, Trends in Neurosciences.

[12]  R. Hardie,et al.  Facets of Vision , 1989, Springer Berlin Heidelberg.

[13]  W. Reichardt,et al.  Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly's nervous system. , 1989, Journal of the Optical Society of America. A, Optics and image science.

[14]  Michael R. Ibbotson,et al.  Response characteristics of four wide-field motion-sensitive descending interneurones in Apis mellifera. , 1990 .

[15]  Michael R. Ibbotson,et al.  Response Properties and Adaptation of Neurones Sensitive to Image Motion in the Butterfly Papilio Aegeus , 1991 .

[16]  N. J. Bidwell,et al.  Possible functions of a population of descending neurons in the honeybee's visuo-motor pathway , 1993 .

[17]  K. Kirschfeld,et al.  Motion sensitivity in the nucleus of the basal optic root of the pigeon. , 1994, Journal of neurophysiology.

[18]  M. J. Morgan,et al.  Stereoscopic depth perception at high velocities , 1995, Nature.