Selecting soluble/foldable protein domains through single-gene or genomic ORF filtering: structure of the head domain of Burkholderia pseudomallei antigen BPSL2063.

The 1.8 Å resolution crystal structure of a conserved domain of the potential Burkholderia pseudomallei antigen and trimeric autotransporter BPSL2063 is presented as a structural vaccinology target for melioidosis vaccine development. Since BPSL2063 (1090 amino acids) hosts only one conserved domain, and the expression/purification of the full-length protein proved to be problematic, a domain-filtering library was generated using β-lactamase as a reporter gene to select further BPSL2063 domains. As a result, two domains (D1 and D2) were identified and produced in soluble form in Escherichia coli. Furthermore, as a general tool, a genomic open reading frame-filtering library from the B. pseudomallei genome was also constructed to facilitate the selection of domain boundaries from the entire ORFeome. Such an approach allowed the selection of three potential protein antigens that were also produced in soluble form. The results imply the further development of ORF-filtering methods as a tool in protein-based research to improve the selection and production of soluble proteins or domains for downstream applications such as X-ray crystallography.

[1]  M. Nardini,et al.  Crystal structure of LptH, the periplasmic component of the lipopolysaccharide transport machinery from Pseudomonas aeruginosa , 2015, The FEBS journal.

[2]  Oscar Conchillo-Solé,et al.  From crystal structure to in silico epitope discovery in the Burkholderia pseudomallei flagellar hook‐associated protein FlgK , 2015, The FEBS journal.

[3]  Alessandro Gori,et al.  Structure-based design of a B cell antigen from B. pseudomallei. , 2015, ACS chemical biology.

[4]  R. Rappuoli,et al.  Finding epitopes with computers. , 2013, Chemistry & biology.

[5]  Alessandro Gori,et al.  Exploiting the Burkholderia pseudomallei acute phase antigen BPSL2765 for structure-based epitope discovery/design in structural vaccinology. , 2013, Chemistry & biology.

[6]  Flavio Mignone,et al.  Profiling celiac disease antibody repertoire. , 2013, Clinical immunology.

[7]  P. Cotter,et al.  Functional Characterization of Burkholderia pseudomallei Trimeric Autotransporters , 2013, Infection and Immunity.

[8]  Alessandro Gori,et al.  A structure-based strategy for epitope discovery in Burkholderia pseudomallei OppA antigen. , 2013, Structure.

[9]  Andrei N Lupas,et al.  Complete fiber structures of complex trimeric autotransporter adhesins conserved in enterobacteria , 2012, Proceedings of the National Academy of Sciences.

[10]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[11]  F. Mignone,et al.  Filtering "genic" open reading frames from genomic DNA samples for advanced annotation , 2011, BMC Genomics.

[12]  M. Stevens,et al.  Autotransporters and Their Role in the Virulence of Burkholderia pseudomallei and Burkholderia mallei , 2011, Front. Microbio..

[13]  G. Bancroft,et al.  Human immune responses to Burkholderia pseudomallei characterized by protein microarray analysis. , 2011, The Journal of infectious diseases.

[14]  Samuel I. Miller,et al.  Structure of a Burkholderia pseudomallei Trimeric Autotransporter Adhesin Head , 2010, PloS one.

[15]  Luigi Biancone,et al.  Rapid interactome profiling by massive sequencing , 2010, Nucleic acids research.

[16]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[17]  Wolfgang Kabsch,et al.  Integration, scaling, space-group assignment and post-refinement , 2010, Acta crystallographica. Section D, Biological crystallography.

[18]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[19]  P. Pavlík,et al.  A comprehensive analysis of filamentous phage display vectors for cytoplasmic proteins: an analysis with different fluorescent proteins , 2009, Nucleic acids research.

[20]  Matthew A. Kayala,et al.  A Burkholderia pseudomallei protein microarray reveals serodiagnostic and cross-reactive antigens , 2009, Proceedings of the National Academy of Sciences.

[21]  G. Waksman,et al.  Repetitive Architecture of the Haemophilus influenzae Hia Trimeric Autotransporter , 2008, Journal of molecular biology.

[22]  H. Schwarz,et al.  Structure of the Head of the Bartonella Adhesin BadA , 2008, PLoS pathogens.

[23]  Andrei N. Lupas,et al.  Domain annotation of trimeric autotransporter adhesins—daTAA , 2008, Bioinform..

[24]  K. Gunsalus,et al.  Protein production and purification , 2008, Nature Methods.

[25]  H. Bernstein,et al.  Protein secretion in gram-negative bacteria via the autotransporter pathway. , 2007, Annual review of microbiology.

[26]  Jack Snoeyink,et al.  Nucleic Acids Research Advance Access published April 22, 2007 MolProbity: all-atom contacts and structure validation for proteins and nucleic acids , 2007 .

[27]  I. Henderson,et al.  The unusual extended signal peptide region of the type V secretion system is phylogenetically restricted. , 2006, FEMS microbiology letters.

[28]  R. Rappuoli,et al.  A universal vaccine for serogroup B meningococcus. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[29]  B. Cravatt,et al.  Mechanism-based profiling of enzyme families. , 2006, Chemical reviews.

[30]  Gabriel Waksman,et al.  Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter , 2006, The EMBO journal.

[31]  A. Cheng,et al.  Melioidosis: Epidemiology, Pathophysiology, and Management , 2005, Clinical Microbiology Reviews.

[32]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[33]  L. Holm,et al.  Exhaustive enumeration of protein domain families. , 2003, Journal of molecular biology.

[34]  R. Marzari,et al.  Selecting open reading frames from DNA. , 2003, Genome research.

[35]  S. Fields,et al.  Protein analysis on a proteomic scale , 2003, Nature.

[36]  I. Henderson,et al.  The great escape: structure and function of the autotransporter proteins. , 1998, Trends in microbiology.

[37]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[38]  Alexei Vagin,et al.  Molecular replacement with MOLREP. , 2010, Acta crystallographica. Section D, Biological crystallography.

[39]  P. Evans,et al.  Scaling and assessment of data quality. , 2006, Acta crystallographica. Section D, Biological crystallography.

[40]  A. Deacon,et al.  A scaleable and integrated crystallization pipeline applied to mining the Thermotoga maritima proteome , 2004, Journal of Structural and Functional Genomics.

[41]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..