The Simulation of Ionic Charge Transport in Biological Ion Channels: An Introduction to Numerical Methods

[1]  J. C. Poggendorf Annalen der Physik und Chemie , 1829 .

[2]  M. Muir Physical Chemistry , 1888, Nature.

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[5]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[6]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[7]  A. Booth Numerical Methods , 1957, Nature.

[8]  C. Q. Lee,et al.  The Computer Journal , 1958, Nature.

[9]  B. A. Carré,et al.  The Determination of the Optimum Accelerating Factor for Successive Over-relaxation , 1961, Comput. J..

[10]  G. V. Chester,et al.  Solid-State Physics , 1962, Nature.

[11]  B. B. Owen,et al.  The Physical Chemistry of Electrolytic Solutions , 1963 .

[12]  H. Gummel A self-consistent iterative scheme for one-dimensional steady state transistor calculations , 1964 .

[13]  R. Korotev Method , 1966, Understanding Religion.

[14]  R. P. Bell,et al.  Modern Electrochemistry , 1966, Nature.

[15]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[16]  Stuart A. Rice,et al.  The Statistical Mechanics of Simple Liquids , 1966 .

[17]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[18]  B. F. Oscillator Large-Signal Analysis of a Silicon Read Diode Oscillator , 1969 .

[19]  H. Gummel,et al.  Large-signal analysis of a silicon Read diode oscillator , 1969 .

[20]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[21]  Harold L. Friedman,et al.  Study of a Refined Model for Aqueous 1‐1 Electrolytes , 1971 .

[22]  D. Urry The gramicidin A transmembrane channel: a proposed pi(L,D) helix. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[24]  Åke Björck,et al.  Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.

[25]  D. Ermak A computer simulation of charged particles in solution. I. Technique and equilibrium properties , 1975 .

[26]  B. Sakmann,et al.  Single-channel currents recorded from membrane of denervated frog muscle fibres , 1976, Nature.

[27]  Harold L. Friedman,et al.  Brownian dynamics: Its application to ionic solutions , 1977 .

[28]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[29]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[30]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[31]  Achi Brandt,et al.  Multigrid solvers on parallel computers , 1981 .

[32]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .

[33]  D. Heyes,et al.  Electrostatic potentials and fields in infinite point charge lattices , 1981 .

[34]  L. Ehrlich An Ad Hoc SOR Method , 1981 .

[35]  Martin H. Schultz,et al.  Elliptic problem solvers , 1981 .

[36]  Electrostatic modeling of ion pores. Energy barriers and electric field profiles. , 1982, Biophysical journal.

[37]  W. L. Jorgensen Revised TIPS for simulations of liquid water and aqueous solutions , 1982 .

[38]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[39]  Peter C. Jordan Electrostatic modeling of ion pores. II. Effects attributable to the membrane dipole potential. , 1983, Biophysical journal.

[40]  S. Swain Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences , 1984 .

[41]  Peter C. Jordan,et al.  Molecular dynamics simulation of cation motion in water-filled gramicidinlike pores. , 1984, Biophysical journal.

[42]  H. Berendsen,et al.  A consistent empirical potential for water–protein interactions , 1984 .

[43]  G. Baccarani,et al.  An investigation of steady-state velocity overshoot in silicon , 1985 .

[44]  D. Levitt Strong electrolyte continuum theory solution for equilibrium profiles, diffusion limitation, and conductance in charged ion channels. , 1985, Biophysical journal.

[45]  C. W. Gardiner,et al.  Handbook of stochastic methods - for physics, chemistry and the natural sciences, Second Edition , 1986, Springer series in synergetics.

[46]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[47]  Michael A. Wilson,et al.  Molecular dynamics test of the Brownian description of Na+ motion in water , 1985 .

[48]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[49]  H. F. Jordan,et al.  Is SOR Color-Blind? , 1986 .

[50]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[51]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[52]  Peter C. Jordan,et al.  Electrostatic modeling of ion pores. Multipolar sources. , 1987, Biophysical chemistry.

[53]  D. Levitt Exact continuum solution for a channel that can be occupied by two ions. , 1987, Biophysical journal.

[54]  C. Brooks Computer simulation of liquids , 1989 .

[55]  E Jakobsson,et al.  Water and polypeptide conformations in the gramicidin channel. A molecular dynamics study. , 1989, Biophysical journal.

[56]  Ronald M. Levy,et al.  Computer simulations of the dielectric properties of water: Studies of the simple point charge and transferrable intermolecular potential models , 1989 .

[57]  N. Karasawa,et al.  Acceleration of convergence for lattice sums , 1989 .

[58]  Peter C. Jordan,et al.  How does vestibule surface charge affect ion conduction and toxin binding in a sodium channel? , 1990, Biophysical journal.

[59]  M Karplus,et al.  Ion transport in a model gramicidin channel. Structure and thermodynamics. , 1991, Biophysical journal.

[60]  J. Mccammon,et al.  Time-correlation analysis of simulated water motion in flexible and rigid gramicidin channels. , 1991, Biophysical journal.

[61]  Arieh Warshel,et al.  A local reaction field method for fast evaluation of long‐range electrostatic interactions in molecular simulations , 1992 .

[62]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[63]  W. Goddard,et al.  Atomic level simulations on a million particles: The cell multipole method for Coulomb and London nonbond interactions , 1992 .

[64]  E Jakobsson,et al.  The nature of ion and water barrier crossings in a simulated ion channel. , 1993, Biophysical journal.

[65]  S. Vandewalle Parallel multigrid waveform relaxation for parabolic problems , 1993 .

[66]  Randal R Ketchem,et al.  High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. , 1993, Science.

[67]  J. Molenaar Multigrid methods for semiconductor device simulation , 1993 .

[68]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[69]  Martin Head-Gordon,et al.  Derivation and efficient implementation of the fast multipole method , 1994 .

[70]  D. Beglov,et al.  Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations , 1994 .

[71]  Steven J. Stuart,et al.  Dynamical fluctuating charge force fields: Application to liquid water , 1994 .

[72]  L Greengard,et al.  Fast Algorithms for Classical Physics , 1994, Science.

[73]  A. Karshikoff,et al.  Electrostatic properties of two porin channels from Escherichia coli. , 1994, Journal of molecular biology.

[74]  Richard J. Needs,et al.  An Optimized Ewald Method for Long-Ranged Potentials , 1994 .

[75]  Wolfgang Fichtner,et al.  Memory Aspects and Performance of Iterative Solvers , 1994, SIAM J. Sci. Comput..

[76]  Jiro Shimada,et al.  Performance of fast multipole methods for calculating electrostatic interactions in biomacromolecular simulations , 1994, J. Comput. Chem..

[77]  B. Honig,et al.  Classical electrostatics in biology and chemistry. , 1995, Science.

[78]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[79]  R. Eisenberg,et al.  Diffusion as a chemical reaction: Stochastic trajectories between fixed concentrations , 1995 .

[80]  R. Eisenberg,et al.  Hydrodynamic model of temperature change in open ionic channels. , 1995, Biophysical journal.

[81]  B. Sakmann,et al.  Single-Channel Recording , 1995, Springer US.

[82]  B. Roux,et al.  Structure, energetics, and dynamics of lipid–protein interactions: A molecular dynamics study of the gramicidin A channel in a DMPC bilayer , 1996, Proteins.

[83]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[84]  B. Wallace,et al.  Solution structure of a parallel left-handed double-helical gramicidin-A determined by 2D 1H NMR. , 1996, Journal of molecular biology.

[85]  J. Board,et al.  Ewald summation techniques in perspective: a survey , 1996 .

[86]  Jim Glosli,et al.  Comments on P3M, FMM, and the Ewald method for large periodic Coulombic systems , 1996 .

[87]  P. Turq,et al.  REAL IONIC SOLUTIONS IN THE MEAN SPHERICAL APPROXIMATION. 1. SIMPLE SALTS IN THE PRIMITIVE MODEL , 1996 .

[88]  R. S. Eisenberg,et al.  Computing the Field in Proteins and Channels , 2010, 1009.2857.

[89]  K. C. Lee,et al.  Macromolecular structural elucidation with solid-state NMR-derived orientational constraints , 1996, Journal of biomolecular NMR.

[90]  Frederick E. Petry,et al.  Principles and Applications , 1997 .

[91]  L. Shen,et al.  Transmembrane helix structure, dynamics, and interactions: multi-nanosecond molecular dynamics simulations. , 1997, Biophysical journal.

[92]  E Jakobsson,et al.  Computer simulation studies of biological membranes: progress, promise and pitfalls. , 1997, Trends in biochemical sciences.

[93]  Christian Holm,et al.  How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines , 1998 .

[94]  Christopher M. Snowden,et al.  Introduction To Semiconductor Device Modelling , 1998 .

[95]  B. Eisenberg,et al.  Anomalous mole fraction effect, electrostatics, and binding in ionic channels. , 1998, Biophysical journal.

[96]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[97]  M S Sansom,et al.  Lipid properties and the orientation of aromatic residues in OmpF, influenza M2, and alamethicin systems: molecular dynamics simulations. , 1998, Biochemistry.

[98]  H. Berendsen,et al.  A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. , 1998, Biophysical journal.

[99]  Gerhard Hummer,et al.  Molecular Theories and Simulation of Ions and Polar Molecules in Water , 1998 .

[100]  S. Chung,et al.  Brownian dynamics study of ion transport in the vestibule of membrane channels. , 1998, Biophysical journal.

[101]  E Jakobsson,et al.  Using theory and simulation to understand permeation and selectivity in ion channels. , 1998, Methods.

[102]  B. Roux,et al.  Statistical mechanical equilibrium theory of selective ion channels. , 1999, Biophysical journal.

[103]  A. Nitzan,et al.  A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel. , 1999, Biophysical journal.

[104]  Shin-Ho Chung,et al.  The effect of hydrophobic and hydrophilic channel walls on the structure and diffusion of water and ions , 1999 .

[105]  T. Weiss,et al.  Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. , 1999, Biophysical journal.

[106]  Herman J. C. Berendsen,et al.  Molecular Dynamics Simulations: The Limits and Beyond , 1999, Computational Molecular Dynamics.

[107]  T. E. Thompson,et al.  Monte Carlo simulation of two-component bilayers: DMPC/DSPC mixtures. , 1999, Biophysical journal.

[108]  Sean Conlan,et al.  Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter , 1999, Nature.

[109]  C. Caldwell Mathematics of Computation , 1999 .

[110]  E. Jakobsson,et al.  Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. II. Rates and mechanisms of water transport. , 1999, Biophysical journal.

[111]  P. Phale,et al.  Brownian dynamics simulation of ion flow through porin channels. , 1999, Journal of molecular biology.

[112]  Benedict Leimkuhler,et al.  Computational Molecular Dynamics: Challenges, Methods, Ideas: Proceedings of the 2nd International Symposium on Algorithms for Macromolecular Modellin , 1999 .

[113]  L. Yang,et al.  Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. , 1999, Biophysical journal.

[114]  Tamar Schlick,et al.  Some Failures and Successes of Long-Timestep Approaches to Biomolecular Simulations , 1999, Computational Molecular Dynamics.

[115]  M S Sansom,et al.  Alamethicin helices in a bilayer and in solution: molecular dynamics simulations. , 1999, Biophysical journal.

[116]  Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. I. Structure of the molecular complex. , 1999, Biophysical journal.

[117]  Benedict Leimkuhler,et al.  Computational Molecular Dynamics: Challenges, Methods, Ideas , 1999, Computational Molecular Dynamics.

[118]  Harry A. Stern,et al.  Fluctuating Charge, Polarizable Dipole, and Combined Models: Parameterization from ab Initio Quantum Chemistry , 1999 .

[119]  A. Smondyrev,et al.  Structure of dipalmitoylphosphatidylcholine/cholesterol bilayer at low and high cholesterol concentrations: molecular dynamics simulation. , 1999, Biophysical journal.

[120]  R. MacKinnon,et al.  The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. , 1999, Science.

[121]  U. Essmann,et al.  Dynamical properties of phospholipid bilayers from computer simulation. , 1999, Biophysical journal.

[122]  Ruhong Zhou,et al.  Parametrizing a polarizable force field from ab initio data. I. The fluctuating point charge model , 1999 .

[123]  E Jakobsson,et al.  Combined Monte Carlo and molecular dynamics simulation of fully hydrated dioleyl and palmitoyl-oleyl phosphatidylcholine lipid bilayers. , 1999, Biophysical journal.

[124]  S H Chung,et al.  Test of Poisson-Nernst-Planck Theory in Ion Channels , 1999, The Journal of general physiology.

[125]  E. von Kitzing,et al.  (In)validity of the constant field and constant currents assumptions in theories of ion transport. , 1999, Biophysical journal.

[126]  Christian Holm,et al.  How to Mesh up Ewald Sums , 2000 .

[127]  R. L. Rowley,et al.  A corrected 3D Ewald calculation of the low effective temperature properties of the electrochemical interface , 2000 .

[128]  J. Nagle,et al.  Lipid bilayer structure. , 2000, Current opinion in structural biology.

[129]  Uwe Hollerbach,et al.  Predicting Function from Structure Using the Poisson−Nernst−Planck Equations: Sodium Current in the Gramicidin A Channel , 2000 .

[130]  E. Lindahl,et al.  Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. , 2000, Biophysical journal.

[131]  B. Roux,et al.  A combined molecular dynamics and diffusion model of single proton conduction through gramicidin. , 2000, Biophysical journal.

[132]  B. Eisenberg,et al.  Binding and selectivity in L-type calcium channels: a mean spherical approximation. , 2000, Biophysical journal.

[133]  W. Im,et al.  A Grand Canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels. , 2000, Biophysical journal.

[134]  M. Kurnikova,et al.  Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on gramicidin A channel conductance. , 2000, Biophysical journal.

[135]  Serge Durand-Vidal,et al.  Electrolytes at interfaces , 2000 .

[136]  D. Busath,et al.  Monte Carlo Simulations of the Mechanism for Channel Selectivity: The Competition between Volume Exclusion and Charge Neutrality , 2000 .

[137]  Shin-Ho Chung,et al.  Tests of continuum theories as models of ion channels. II. Poisson-Nernst-Planck theory versus brownian dynamics. , 2000, Biophysical journal.

[138]  A. Kierzek,et al.  Cluster Formation in Aqueous Electrolyte Solutions Observed by Dynamic Light Scattering , 2000 .

[139]  B. Roux,et al.  Molecular dynamics of the KcsA K(+) channel in a bilayer membrane. , 2000, Biophysical journal.

[140]  S. Feller,et al.  Molecular dynamics simulations of lipid bilayers , 2000 .

[141]  R. L. Rowley,et al.  Molecular dynamics simulation of continuous current flow through a model biological membrane channel. , 2001, Physical review letters.

[142]  D. Busath,et al.  Monte Carlo Study of the Effect of Ion and Channel Size on the Selectivity of a Model Calcium Channel , 2001 .

[143]  Robert S. Eisenberg,et al.  Two- and Three-Dimensional Poisson–Nernst–Planck Simulations of Current Flow Through Gramicidin A , 2002, J. Sci. Comput..

[144]  R. MacKinnon,et al.  Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution , 2001, Nature.

[145]  J. F. Hinton,et al.  Structures of gramicidins A, B, and C incorporated into sodium dodecyl sulfate micelles. , 2001, Biochemistry.

[146]  H. Bayley,et al.  Stochastic sensors inspired by biology , 2001, Nature.

[147]  E. Jakobsson,et al.  Hierarchical approach to predicting permeation in ion channels. , 2001, Biophysical journal.

[148]  J. Valverde Molecular Modelling: Principles and Applications , 2001 .

[149]  D Henderson,et al.  Model channel ion currents in NaCl-extended simple point charge water solution with applied-field molecular dynamics. , 2001, Biophysical journal.

[150]  G. R. Smith,et al.  Simulation approaches to ion channel structure–function relationships , 2001, Quarterly Reviews of Biophysics.

[151]  B. Roux,et al.  Energetics of ion conduction through the K + channel , 2022 .

[152]  T. Halgren,et al.  Polarizable force fields. , 2001, Current opinion in structural biology.

[153]  Alexander D. MacKerell,et al.  Computational Biochemistry and Biophysics , 2001 .

[154]  Graham R. Smith,et al.  Setting up and optimization of membrane protein simulations , 2002, European Biophysics Journal.

[155]  R. Eisenberg,et al.  Combining computational chemistry and computational electronics to understand protein ion channels , 2002 .

[156]  Shin-Ho Chung,et al.  Reservoir boundaries in Brownian dynamics simulations of ion channels. , 2002, Biophysical Journal.

[157]  G. Yellen The voltage-gated potassium channels and their relatives , 2002, Nature.

[158]  Helmut Grubmüller,et al.  Water permeation through gramicidin A: desformylation and the double helix: a molecular dynamics study. , 2002, Biophysical journal.

[159]  R. L. Rowley,et al.  Permeation of ions through a model biological channel: effect of periodic boundary conditions and cell size , 2002 .

[160]  Youxing Jiang,et al.  Crystal structure and mechanism of a calcium-gated potassium channel , 2002, Nature.

[161]  Godehard Sutmann,et al.  Long-Range Interactions in Many-Particle Simulation , 2002 .

[162]  Shin-Ho Chung,et al.  Continuum electrostatics fails to describe ion permeation in the gramicidin channel. , 2002, Biophysical journal.

[163]  W. Im,et al.  Ions and counterions in a biological channel: a molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution. , 2002, Journal of molecular biology.

[164]  Benoît Roux,et al.  On the potential functions used in molecular dynamics simulations of ion channels. , 2002, Biophysical journal.

[165]  T. Schlick,et al.  Efficient multiple-time-step integrators with distance-based force splitting for particle-mesh-Ewald molecular dynamics simulations , 2002 .

[166]  Ansgar Philippsen,et al.  Imaging the electrostatic potential of transmembrane channels: atomic probe microscopy of OmpF porin. , 2002, Biophysical journal.

[167]  P. Clancy,et al.  Effects of the Ewald sum on the free energy of the extended simple point charge model for water , 2002 .

[168]  W. Im,et al.  Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. , 2002, Journal of molecular biology.

[169]  H. L. Scott,et al.  Modeling the lipid component of membranes. , 2002, Current opinion in structural biology.

[170]  T. Schlick Molecular modeling and simulation , 2002 .

[171]  K. M. Armstrong,et al.  On the origin of closing flickers in gramicidin channels: a new hypothesis. , 2002, Biophysical journal.

[172]  Galya Orr,et al.  Probing conformational changes of gramicidin ion channels by single-molecule patch-clamp fluorescence microscopy. , 2003, Biophysical journal.

[173]  Donald E Elmore,et al.  Investigating lipid composition effects on the mechanosensitive channel of large conductance (MscL) using molecular dynamics simulations. , 2003, Biophysical journal.

[174]  S. Bezrukov,et al.  Residue ionization and ion transport through OmpF channels. , 2003, Biophysical journal.

[175]  Uwe Hollerbach,et al.  Dielectric boundary force and its crucial role in gramicidin. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[176]  Youxing Jiang,et al.  The principle of gating charge movement in a voltage-dependent K+ channel , 2003, Nature.

[177]  Steven J. Stuart,et al.  Potentials and Algorithms for Incorporating Polarizability in Computer Simulations , 2003 .

[178]  R. Rand,et al.  The effects of gramicidin on the structure of phospholipid assemblies. , 2003, Biophysical journal.

[179]  Serdar Kuyucak,et al.  Gramicidin A channel as a test ground for molecular dynamics force fields. , 2003, Biophysical journal.

[180]  Boaz Nadler,et al.  Connecting a Discrete Ionic Simulation to a Continuum , 2003, SIAM J. Appl. Math..

[181]  M. Sansom,et al.  Potassium channel, ions, and water: simulation studies based on the high resolution X-ray structure of KcsA. , 2003, Biophysical journal.

[182]  M. Saraniti,et al.  Silicon-based ion channel sensor , 2003 .

[183]  C. Brooks,et al.  An implicit membrane generalized born theory for the study of structure, stability, and interactions of membrane proteins. , 2003, Biophysical journal.

[184]  G. Ciccotti,et al.  Algorithms for Brownian dynamics , 2003 .

[185]  Shin-Ho Chung,et al.  Dielectric self-energy in Poisson-Boltzmann and Poisson-Nernst-Planck models of ion channels. , 2003, Biophysical journal.

[186]  B. Roux,et al.  Structure of gramicidin a in a lipid bilayer environment determined using molecular dynamics simulations and solid-state NMR data. , 2003, Journal of the American Chemical Society.

[187]  M. Cadene,et al.  X-ray structure of a voltage-dependent K+ channel , 2003, Nature.

[188]  Abraham Nitzan,et al.  The role of the dielectric barrier in narrow biological channels: a novel composite approach to modeling single-channel currents. , 2003, Biophysical journal.

[189]  B. Roux,et al.  Energetics of ion conduction through the gramicidin channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[190]  B. Roux,et al.  A microscopic view of ion conduction through the K+ channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[191]  G. Lamm,et al.  The Poisson–Boltzmann Equation , 2003 .

[192]  Silicon-based ion channel sensor , 2004 .

[193]  R. Horn,et al.  Specificity of Charge-carrying Residues in the Voltage Sensor of Potassium Channels , 2004, The Journal of general physiology.

[194]  Dirk Gillespie,et al.  Computing induced charges in inhomogeneous dielectric media: application in a Monte Carlo simulation of complex ionic systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[195]  Peter C. Jordan,et al.  Gating gramicidin channels in lipid bilayers: reaction coordinates and the mechanism of dissociation. , 2004, Biophysical journal.

[196]  E. Jakobsson,et al.  Ionization states of residues in OmpF and mutants: effects of dielectric constant and interactions between residues. , 2004, Biophysical journal.

[197]  Peter C. Jordan,et al.  Anion pathway and potential energy profiles along curvilinear bacterial ClC Cl- pores: electrostatic effects of charged residues. , 2004, Biophysical journal.

[198]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[199]  Perspectives on Ab Initio Calculations , 2007 .

[200]  A. Wallqvist,et al.  Molecular Models of Water: Derivation and Description , 2007 .

[201]  T. Lybrand Computer Simulation of Biomolecular Systems Using Molecular Dynamics and Free Energy Perturbation Methods , 2007 .

[202]  T. P. Straatsma,et al.  Free Energy by Molecular Simulation , 2007 .

[203]  Appendix: Published Force Field Parameters for Molecular Mechanics, Molecular Dynamics, and Monte Carlo Simulations , 2007 .

[204]  K. Merz,et al.  Computer Simulation of Lipid Systems , 2007 .

[205]  R. Eisenberg Atomic Biology, Electrostatics, and Ionic Channels , 2008, 0807.0715.