Compact floating-gate learning array with STDP

In this paper, we present a Spiking Neural Network (SNN) architecture that incorporates Integrate-and-fire (IF) type neurons and floating-gate transistors (FGTs) to store the synaptic weights. Compactness of the network has been the major target throughout the design. We believe that a CrossNet architecture lends itself very well to satisfy this goal. The synaptic weights are updated locally according to an approximation of Spike-Timing-Dependent Plasticity (STDP) rule. While the computations are performed internally in the analog domain the network is interfaced with a digital Address-Event-Representation (AER) to achieve robust off-chip communication. The operation of the array is described and selected simulations with 65nm CMOS are shown.

[1]  R. Williams,et al.  Nano/CMOS architectures using a field-programmable nanowire interconnect , 2007 .

[2]  Paul E. Hasler,et al.  Single transistor learning synapse with long term storage , 1995, Proceedings of ISCAS'95 - International Symposium on Circuits and Systems.

[3]  M. Lenzlinger,et al.  Fowler‐Nordheim Tunneling into Thermally Grown SiO2 , 1969 .

[4]  Gert Cauwenberghs,et al.  A floating-gate programmable array of silicon neurons for central pattern generating networks , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[5]  Konstantin K. Likharev,et al.  Neuromorphic architectures for nanoelectronic circuits: Research Articles , 2004 .

[6]  Shih-Chii Liu,et al.  Analog VLSI: Circuits and Principles , 2002 .

[7]  Tobi Delbrück,et al.  A 128 X 128 120db 30mw asynchronous vision sensor that responds to relative intensity change , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[8]  Gert Cauwenberghs Adaptation, learning and storage in analog VLSI , 1996, Proceedings Ninth Annual IEEE International ASIC Conference and Exhibit.

[9]  L. Carley,et al.  Trimming analog circuits using floating-gate analog MOS memory , 1989, IEEE International Solid-State Circuits Conference, 1989 ISSCC. Digest of Technical Papers.

[10]  Konstantin K. Likharev,et al.  Neuromorphic architectures for nanoelectronic circuits , 2004, Int. J. Circuit Theory Appl..

[11]  Konstantin K. Likharev,et al.  Neuromorphic CMOL circuits , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[12]  Patrick Camilleri,et al.  A Neuromorphic aVLSI network chip with configurable plastic synapses , 2007, 7th International Conference on Hybrid Intelligent Systems (HIS 2007).

[13]  B. A. Minch,et al.  A floating-gate MOS learning array with locally computed weight updates , 1997 .

[14]  L. Chua Memristor-The missing circuit element , 1971 .

[15]  Jilles Vreeken,et al.  Spiking neural networks, an introduction , 2003 .

[16]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[17]  Arnaud Delorme,et al.  Spike-based strategies for rapid processing , 2001, Neural Networks.

[18]  Paul E. Hasler,et al.  An analog floating-gate node for Supervised learning , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  Gregory S. Snider,et al.  Spike-timing-dependent learning in memristive nanodevices , 2008, 2008 IEEE International Symposium on Nanoscale Architectures.

[20]  Piotr Dudek,et al.  Compact silicon neuron circuit with spiking and bursting behaviour , 2008, Neural Networks.

[21]  Christopher J. Diorio Neurally inspired silicon learning : from synapse transistors to learning arrays , 1997 .

[22]  Matthew R. Kucic Analog Computing Arrays , 2004 .

[23]  Shih-Chii Liu,et al.  Temporally learning floating-gate VLSI synapses , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[24]  Paul E. Hasler Low-power programmable signal processing , 2005, Fifth International Workshop on System-on-Chip for Real-Time Applications (IWSOC'05).