Capsule implosion optimization during the indirect-drive National Ignition Campaign

Capsule performance optimization campaigns will be conducted at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition. The campaigns will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models using a variety of ignition capsule surrogates before proceeding to cryogenic-layered implosions and ignition experiments. The quantitative goals and technique options and down selections for the tuning campaigns are first explained. The computationally derived sensitivities to key laser and target parameters are compared to simple analytic models to gain further insight into the physics of the tuning techniques. The results of the validation of the tuning techniques at the OMEGA facility [J. M. Soures et al., Phys. Plasmas 3, 2108 (1996)] under scaled hohlraum and capsule conditions relevant to the ignition design are shown ...

[1]  David Strozzi,et al.  Suprathermal electrons generated by the two-plasmon-decay instability in gas-filled Hohlraums , 2008 .

[2]  Steven W. Haan,et al.  Three-dimensional HYDRA simulations of National Ignition Facility targets , 2001 .

[3]  Gilbert W. Collins,et al.  Streaked radiography measurements of convergent ablator performance (invited). , 2010, The Review of scientific instruments.

[4]  D. K. Bradley,et al.  Experimental studies of ICF indirect-drive Be and high density C candidate ablators , 2007 .

[5]  Richard L. Berger,et al.  Optimization of the NIF ignition point design hohlraum , 2007 .

[6]  R. More,et al.  An electron conductivity model for dense plasmas , 1984 .

[7]  Otto L. Landen,et al.  Status of our understanding and modeling of x-ray coupling efficiency in laser heated hohlraums , 2001 .

[8]  M. J. Pivovaroff,et al.  Images of the laser entrance hole from the static x-ray imager at NIF. , 2010, The Review of scientific instruments.

[9]  C. Sorce,et al.  Experimental demonstration of early time, hohlraum radiation symmetry tuning for indirect drive ignition experiments , 2011 .

[10]  H. A. Baldis,et al.  Calibration of a flat field soft x-ray grating spectrometer for laser produced plasmas. , 2010, The Review of scientific instruments.

[11]  D. K. Bradley,et al.  X-ray induced pinhole closure in point-projection x-ray radiography , 2006 .

[12]  David C. Eder,et al.  Progress in long scale length laser–plasma interactions , 2004 .

[13]  S. J. Moon,et al.  Properties of fluid deuterium under double-shock compression to several Mbar , 2004 .

[14]  Steven W. Haan,et al.  A comparison of three-dimensional multimode hydrodynamic instability growth on various National Ignition Facility capsule designs with HYDRA simulations , 1998 .

[15]  J. W. Shaner,et al.  Ultrahigh-Pressure Laser-Driven Shock-Wave Experiments in Aluminum , 1979 .

[16]  Jochen Schein,et al.  Demonstration of Enhanced Radiation Drive in Hohlraums Made from a Mixture of High-Z Wall Materials , 2007 .

[17]  Turner,et al.  Modeling and interpretation of Nova's symmetry scaling data base. , 1994, Physical review letters.

[18]  Erlan S. Bliss,et al.  Nova experimental facility (invited) , 1986 .

[19]  J. E. Miller,et al.  X-Ray Preheating of Window Materials in Direct-Drive Shock-Wave Timing Experiments , 2006 .

[20]  M. J. Edwards,et al.  Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies , 2009, Science.

[21]  Michael M. Marinak,et al.  Modeling titanium line emission from ICF capsules in three dimensions , 2001 .

[22]  Martin Richardson,et al.  Optical fiducials for x‐ray streak cameras at LLE , 1986 .

[23]  Bruno Villette,et al.  Multi-keV x-ray conversion efficiencies of laser-preexploded titanium foils , 2005 .

[24]  Mordecai D. Rosen,et al.  The science applications of the high-energy density plasmas created on the Nova laser , 1996 .

[25]  C. Sorce,et al.  NIF-scale re-emission sphere measurements of early-time Tr = 100 eV hohlraum symmetry (invited). , 2008, The Review of scientific instruments.

[26]  Jay D. Salmonson,et al.  Increasing robustness of indirect drive capsule designs against short wavelength hydrodynamic instabilities , 2004 .

[27]  Paul A. Jaanimagi,et al.  Tracer spectroscopy diagnostics of doped ablators in inertial confinement fusion experiments on OMEGA , 2004 .

[28]  M. Knudson,et al.  Equation of state measurements in liquid deuterium to 70 GPa. , 2001, Physical review letters.

[29]  P Bell,et al.  Hot electron measurements in ignition relevant Hohlraums on the National Ignition Facility. , 2010, The Review of scientific instruments.

[30]  Peter A. Amendt,et al.  Rugby-like hohlraum experimental designs for demonstrating x-ray drive enhancement , 2008 .

[31]  Forrest J. Rogers,et al.  Ionization equilibrium and equation of state in strongly coupled plasmas , 2000 .

[32]  Jochen Schein,et al.  X-ray conversion efficiency of high-Z hohlraum wall materials for indirect drive ignition , 2008 .

[33]  Steven W. Haan,et al.  Simulations of X-ray emission from Omega fill tube experiments , 2006 .

[34]  R. Kirkwood,et al.  Full-aperture backscatter measurements on the National Ignition Facility , 2004 .

[35]  H F Robey,et al.  An assessment of the 3D geometric surrogacy of shock timing diagnostic techniques for tuning experiments on the NIF , 2007 .

[36]  Peter A. Amendt,et al.  Hard x-ray imaging for measuring laser absorption spatial profiles on the National Ignition Facility , 2006 .

[37]  Rosen,et al.  High temperatures in inertial confinement fusion radiation cavities heated with 0.35 microm light. , 1994, Physical review letters.

[38]  C. Sorce,et al.  Hohlraum energetics and implosion symmetry with elliptical phase plates using a multi-cone beam geometry on OMEGA , 2008 .

[39]  O. Landen,et al.  In-flight measurements of capsule shell adiabats in laser-driven implosions. , 2011, Physical review letters.

[40]  K. Piston,et al.  Implementation of a near backscattering imaging system on the National Ignition Facility , 2004 .

[41]  Arthur Nobile,et al.  Shock propagation, preheat, and x-ray burnthrough in indirect-drive inertial confinement fusion ablator materials , 2004 .

[42]  Albert Simon,et al.  On the inhomogeneous two‐plasmon instability , 1983 .

[43]  Edward I. Moses,et al.  The National Ignition Facility: enabling fusion ignition for the 21st century , 2004 .

[44]  R J Wallace,et al.  Observation of high soft x-ray drive in large-scale hohlraums at the National Ignition Facility. , 2010, Physical review letters.

[45]  Paul A. Bradley,et al.  Calculation of re-emission diagnostic in NIF ignition Hohlraum at 1MJ laser energy , 2006 .

[46]  John Edwards,et al.  The effects of fill tubes on the hydrodynamics of ignition targets and prospects for ignition , 2005 .

[47]  O. L. Landen,et al.  Development of X-ray Thomson scattering for implosion target characterization , 2011 .

[48]  B. Remington,et al.  High-energy x-ray backlighter spectrum measurements using calibrated image plates. , 2010, The Review of scientific instruments.

[49]  Jay D. Salmonson,et al.  Rev3 Update of Requirements for NIF Ignition Targets , 2009 .

[50]  Nelson M. Hoffman,et al.  Degradation of radiatively driven inertial confinement fusion capsule implosions by multifluid interpenetration mixing , 2003 .

[51]  D. K. Bradley,et al.  Capsule performance optimization in the national ignition campaign , 2009 .

[52]  George A. Kyrala,et al.  Scaling of x-ray K-shell sources from laser-solid interactions , 2001, SPIE Optics + Photonics.

[53]  J. D. Moody,et al.  Improved gas-filled hohlraum performance on Nova with beam smoothing , 1998 .

[54]  Barukh Yaakobi,et al.  Diagnosing direct-drive, shock-heated, and compressed plastic planar foils with noncollective spectrally resolved x-ray scattering , 2007 .

[55]  S. Sutton,et al.  National Ignition Facility laser performance status. , 2007, Applied optics.

[56]  J. D. Moody,et al.  Cryogenic DT and D2 targets for inertial confinement fusiona) , 2006 .

[57]  J. D. Salmonson,et al.  Update on Specifications for NIF Ignition Targets, and Their Rollup into an Error Budget , 2005 .

[58]  Bruce A. Hammel,et al.  High energy x ray imaging diagnostic on Nova , 1992 .

[59]  David V. Campbell,et al.  High-brightness, high-spatial-resolution, 6.151keV x-ray imaging of inertial confinement fusion capsule implosion and complex hydrodynamics experiments on Sandia’s Z accelerator (invited) , 2006 .

[60]  Alice Koniges,et al.  Debris and Shrapnel Mitigation Procedure for NIF Experiments , 2008 .

[61]  O L Landen,et al.  Hohlraum-driven high-convergence implosion experiments with multiple beam cones on the omega laser facility. , 2002, Physical review letters.

[62]  John R. Celeste,et al.  Filter-fluorescer diagnostic system for the National Ignition Facility , 2004 .

[63]  Keane,et al.  X-ray spectroscopic measurements of high densities and temperatures from indirectly driven inertial confinement fusion capsules. , 1993, Physical review letters.

[64]  Peter A. Amendt,et al.  Update on design simulations for NIF ignition targets, and the rollup of all specifications into an error budget , 2007 .

[65]  H T Powell,et al.  Designing fully continuous phase screens for tailoring focal-plane irradiance profiles. , 1996, Optics letters.

[66]  Peter A. Amendt,et al.  Experimental measurement of Au M-band flux in indirectly-driven double-shell implosions , 2005 .

[67]  Nathan Meezan,et al.  Target designs for energetics experiments on the National Ignition Facility , 2007 .

[68]  Delamater,et al.  Reemission technique for symmetry measurements in Hohlraum targets containing a centered high-Z ball. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[69]  K. R. Manes,et al.  The first target experiments on the National Ignition Facility , 2007 .

[70]  Daniel N. Baker,et al.  The role of symmetry in indirect‐drive laser fusion , 1995 .

[71]  L. J. Atherton,et al.  Overview of inertial fusion research in the United States , 2007 .

[72]  Stephanie B. Hansen,et al.  Equation of state, occupation probabilities and conductivities in the average atom Purgatorio code , 2006 .

[73]  Abbas Nikroo,et al.  Reduction of Isolated Defects on Ge Doped CH Capsules to Below Ignition Specifications , 2007 .

[74]  Peter A. Amendt,et al.  Update on Specifications for NIF Ignition Targets , 2007 .

[75]  J. M. Soures,et al.  Measuring shock-bang timing and ρR evolution of D3He implosions at OMEGA , 2004 .

[76]  Marilyn Schneider,et al.  Gas-filled hohlraum experiments at the National Ignition Facility , 2004 .

[77]  Otto L. Landen,et al.  Omega Dante soft x-ray power diagnostic component calibration at the National Synchrotron Light Source , 2004 .

[78]  Nakai,et al.  Radiative heating of low-Z solid foils by laser-generated x rays. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[79]  Arthur Nobile,et al.  Diagnosing ablator burn through in ignition capsules using D2+He3 gas filled surrogates , 2006 .

[80]  Peter A. Amendt,et al.  Role of laser beam geometry in improving implosion symmetry and performance for indirect-drive inertial confinement fusion , 2003 .

[81]  Troy W. Barbee,et al.  Multispectral x-ray imaging with a pinhole array and a flat Bragg mirror , 2005 .

[82]  M D Rosen,et al.  Measurement of the absolute hohlraum-wall albedo under ignition foot drive conditions. , 2004, Physical review letters.

[83]  Paul A. Jaanimagi,et al.  The streak camera development program at LLE , 2005, International Congress on High-Speed Imaging and Photonics.

[84]  C. Thomas,et al.  Abel solution to a bremmstrahlung inverse problem , 2010 .

[85]  Peter A. Amendt,et al.  National Ignition Facility scale hohlraum asymmetry studies by thin shell radiography , 2001 .

[86]  Jay D. Salmonson,et al.  Robustness studies of ignition targets for the National Ignition Facility in two dimensions , 2007 .

[87]  Jay D. Salmonson,et al.  Plastic ablator ignition capsule design for the National Ignition Facility , 2010 .

[88]  Peter A. Amendt,et al.  Demonstration of time-dependent symmetry control in hohlraums by drive-beam staggering , 2000 .

[89]  Nathan Meezan Role of Hydrodynamics Simulations for Laser-Plasma Interaction Predictive Capability , 2006 .

[90]  J. D. Moody,et al.  Characterization of the Series 1000 Camera System , 2004 .

[91]  J. Lindl Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain , 1995 .

[92]  O. L. Landen,et al.  Demonstration of the shock-timing technique for ignition targets on the National Ignition Facility , 2009 .

[93]  Jason C. Cooley,et al.  Progress toward fabrication of graded doped beryllium and CH capsules for the National Ignition Facilitya) , 2006 .

[94]  David C. Eder,et al.  Development of Nuclear Diagnostics for the National Ignition Facility (invited) , 2006 .

[95]  J. D. Kilkenny,et al.  A new multichannel soft x‐ray framing camera for fusion experiments , 1992 .

[96]  O. L. Landen,et al.  Experimental validation of a diagnostic technique for tuning the fourth shock timing on National Ignition Facility , 2010 .

[97]  J D Lindl,et al.  Three-wavelength scheme to optimize hohlraum coupling on the National Ignition Facility. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[98]  Ramon Joe Leeper,et al.  Time and spatially resolved measurements of x-ray burnthrough and re-emission in Au and Au:Dy:Nd foils , 2003 .

[99]  R J Wallace,et al.  The first measurements of soft x-ray flux from ignition scale Hohlraums at the National Ignition Facility using DANTE (invited). , 2010, The Review of scientific instruments.

[100]  David H. Cohen,et al.  Numerical Modeling Of Hohlraum Radiation Conditions: Spatial And Spectral Variations Due To Sample Position, Beam Pointing, And Hohlraum Geometry , 2005 .

[101]  Stephen D. Jacobs,et al.  Direct‐drive laser‐fusion experiments with the OMEGA, 60‐beam, >40 kJ, ultraviolet laser system , 1996 .

[102]  C Stoeckl,et al.  Use of d-3He proton spectroscopy as a diagnostic of shell rho r in capsule implosion experiments with approximately 0.2 NIF scale high temperature Hohlraums at Omega. , 2008, The Review of scientific instruments.

[103]  M. Geissel,et al.  Design of a streaked radiography instrument for ICF ablator tuning measurements. , 2008, The Review of scientific instruments.

[104]  B. Blue,et al.  Measurement and simulation of jet mass caused by a high-aspect ratio hole perturbation , 2010 .

[105]  Peter A. Amendt,et al.  A simple time-dependent analytic model of the P2 asymmetry in cylindrical hohlraums , 1999 .

[106]  Mike C. Nostrand,et al.  Polarization Smoothing on the National Ignition Facility , 2005 .

[107]  P Bell,et al.  Measuring symmetry of implosions in cryogenic Hohlraums at the NIF using gated x-ray detectors (invited). , 2010, The Review of scientific instruments.

[108]  Neal R. Pederson,et al.  Gated x-ray detector for the National Ignition Facility , 2006 .

[109]  Peter A. Amendt,et al.  Thinshell symmetry surrogates for the National Ignition Facility: A rocket equation analysis , 2001 .

[110]  Jay D. Salmonson,et al.  High-mode Rayleigh-Taylor growth in NIF ignition capsules , 2007 .

[111]  Luiz Eduardo Borges da Silva,et al.  Shock timing technique for the National Ignition Facility , 2001 .

[112]  L J Atherton Targets for the National Ignition Campaign , 2007 .

[113]  D. Gontier,et al.  DMX: An absolutely calibrated time-resolved broadband soft x-ray spectrometer designed for MJ class laser-produced plasmas (invited) , 2001 .

[114]  J Schein,et al.  Radiation-driven hydrodynamics of high- hohlraums on the national ignition facility. , 2005, Physical review letters.

[115]  Robert L. Kauffman,et al.  Dante soft x-ray power diagnostic for National Ignition Facility , 2004 .

[116]  Nelson M. Hoffman,et al.  Diagnosing radiation drive asymmetry and absorbed energy in ignition Hohlraums using gas-filled capsules , 2006 .

[117]  R. G. Roides,et al.  All-solid-state diode-pumped multi-harmonic laser system for timing fiducial , 2006, International Conference on Lasers, Applications, and Technologies.

[118]  Edward I. Moses,et al.  Ignition on the National Ignition Facility , 2007 .

[119]  L. J. Atherton,et al.  Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility , 2010 .

[120]  L. J. Atherton,et al.  The experimental plan for cryogenic layered target implosions on the National Ignition Facility--The inertial confinement approach to fusion , 2011 .

[121]  Otto L. Landen,et al.  Diagnosing ablator ρR and ρR asymmetries in capsule implosions using charged-particle spectrometry at the National Ignition Facility , 2009 .

[122]  John Kline,et al.  NIF unconverted light and its influence on DANTE measurements. , 2009, The Review of scientific instruments.

[123]  Riccardo Betti,et al.  Diagnosing fuel ρR and ρR asymmetries in cryogenic deuterium-tritium implosions using charged-particle spectrometry at OMEGA , 2009 .

[124]  Dan J. Thoma,et al.  The development and advantages of beryllium capsules for the National Ignition Facility , 1998 .

[125]  J. D. Moody,et al.  Solid Deuterium-Tritium Surface Roughness In A Beryllium Inertial Confinement Fusion Shell , 2007 .

[126]  J. D. Moody,et al.  Design of the National Ignition Facility static x-ray imager , 2001 .

[127]  Peter A. Amendt,et al.  Hohlraum Symmetry Experiments with Multiple Beam Cones on the Omega Laser Facility , 1998 .

[128]  D Besnard,et al.  Fusion with the megajoule laser , 2008 .

[129]  L. V. Powers,et al.  Observation of reduced beam deflection using smoothed beams in gas-filled hohlraum symmetry experiments at Nova , 2000 .

[130]  Brian Spears,et al.  Influence and measurement of mass ablation in ICF implosions , 2007 .

[131]  C. Bentley,et al.  Evaluation of the sensitivity and fading characteristics of an image plate system for x-ray diagnostics. , 2008, The Review of scientific instruments.

[132]  Jay D. Salmonson,et al.  Simulations of high-mode Rayleigh-Taylor growth in NIF ignition capsules , 2007 .

[133]  A Nobile,et al.  Preheat effects on shock propagation in indirect-drive inertial confinement fusion ablator materials. , 2003, Physical review letters.

[134]  Sherry L. Baker,et al.  Diamond Ablators for Inertial Confinement Fusion , 2005 .

[135]  C. Sorce,et al.  Very-high-growth-factor planar ablative Rayleigh-Taylor experimentsa) , 2006 .

[136]  Robert Cook,et al.  Fabrication of Graded Germanium-Doped CH Shells , 2006 .

[137]  Robert Cook,et al.  Review of indirect-drive ignition design options for the National Ignition Facility , 1999 .

[138]  David K. Bradley,et al.  Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility , 2004 .