Identification of Lithium-Regulated Genes in Cultured Lymphoblasts of Lithium Responsive Subjects with Bipolar Disorder

[1]  J. Morissette,et al.  Support for the presence of bipolar disorder susceptibility loci on chromosome 5 Heterogeneity in a homogeneous population in Quebec , 2002, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[2]  Aftab J. Ahmed,et al.  Calcium and Protein Kinase C (PKC)-Related Kinase Mediate α1A-Adrenergic Receptor-Stimulated Activation of Phospholipase D in Rat-1 Cells, Independent of PKC , 2002, Journal of Pharmacology and Experimental Therapeutics.

[3]  Raymond J Carroll,et al.  DNA Microarray Experiments: Biological and Technological Aspects , 2002, Biometrics.

[4]  J. O'Donnell,et al.  Antidepressant-like Profile and Reduced Sensitivity to Rolipram in Mice Deficient in the PDE4D Phosphodiesterase Enzyme , 2002, Neuropsychopharmacology.

[5]  N. Nakahata,et al.  Lithium chloride at a therapeutic concentration reduces Ca2+ response in protein kinase C down-regulated human astrocytoma cells. , 2002, European journal of pharmacology.

[6]  G. Tsujimoto,et al.  Recent Progress in α1-Adrenoceptor Pharmacology , 2002 .

[7]  H. Manji,et al.  Molecular and cellular mechanisms underlying mood stabilization in bipolar disorder: implications for the development of improved therapeutics , 2002, Molecular Psychiatry.

[8]  Yarema Bezchlibnyk,et al.  The Neurobiology of Bipolar Disorder: Focus on Signal Transduction Pathways and the Regulation of Gene Expression , 2002, Canadian journal of psychiatry. Revue canadienne de psychiatrie.

[9]  S. Rapoport,et al.  Analysis of gene expression with cDNA microarrays in rat brain after 7 and 42 days of oral lithium administration , 2002, Brain Research Bulletin.

[10]  D. Quartermain,et al.  Pharmacological evidence for the role of central alpha 1B-adrenoceptors in the motor activity and spontaneous movement of mice , 2001, Neuropharmacology.

[11]  R. Quirion,et al.  DNA microarrays in neuropsychopharmacology. , 2001, Trends in pharmacological sciences.

[12]  M. Piascik,et al.  α1-Adrenergic Receptors: New Insights and Directions , 2001 .

[13]  J. Knauber,et al.  Decreased exploratory activity and impaired passive avoidance behaviour in mice deficient for the α1b-adrenoceptor , 2000, European Neuropsychopharmacology.

[14]  G. Michelotti,et al.  α1-Adrenergic receptor regulation: basic science and clinical implications , 2000 .

[15]  P. Janicak,et al.  Mood stabilizers in the prevention of recurrent affective disorders: a meta‐analysis , 1999, Acta psychiatrica Scandinavica.

[16]  D. Chuang,et al.  Long Term Lithium Treatment Suppresses p53 and Bax Expression but Increases Bcl-2 Expression , 1999, The Journal of Biological Chemistry.

[17]  H. Manji,et al.  The Mood‐Stabilizing Agents Lithium and Valproate RobustlIncrease the Levels of the Neuroprotective Protein bcl‐2 in the CNS , 1999, Journal of neurochemistry.

[18]  M. Alda,et al.  Evidence for a role of phospholipase C-γ1 in the pathogenesis of bipolar disorder , 1998, Molecular Psychiatry.

[19]  M. Chiariello,et al.  Molecular cloning and expression analysis of the human Rab7 GTP-ase complementary deoxyribonucleic acid. , 1996, Biochemical and biophysical research communications.

[20]  R. Belmaker,et al.  Modulation of Protein Kinase C Isozymes and Substrates by Lithium: The Role of Myo-inositol , 1996, Neuropsychopharmacology.

[21]  R. Parthasarathy,et al.  Myo-Inositol Monophosphatase: Diverse Effects of Lithium, Carbamazepine, and Valproate , 1995, Neuropsychopharmacology.

[22]  H. Manji,et al.  Signal transduction pathways. Molecular targets for lithium's actions. , 1995, Archives of general psychiatry.

[23]  J. Hsiao,et al.  Guanine nucleotide-binding proteins in bipolar affective disorder. Effects of long-term lithium treatment. , 1995, Archives of general psychiatry.

[24]  M. Alda,et al.  Lithium response and genetics of affective disorders. , 1994, Journal of affective disorders.

[25]  R. Jope,et al.  Distinctive rat brain immediate early gene responses to seizures induced by lithium plus pilocarpine. , 1994, Brain research. Molecular brain research.

[26]  J. Warsh,et al.  Mononuclear leukocyte levels of G proteins in depressed patients with bipolar disorder or major depressive disorder. , 1994, American Journal of Psychiatry.

[27]  H. Manji,et al.  Long‐term action of lithium: A role for transcriptional and posttranscriptional factors regulated by protein kinase C , 1994, Synapse.

[28]  S. Kish,et al.  Cerebral Cortex Gsα Protein Levels and Forskolin‐Stimulated Cyclic AMP Formation Are Increased in Bipolar Affective Disorder , 1993, Journal of neurochemistry.

[29]  R. Jope,et al.  Chronic Lithium Treatment Impairs Phosphatidylinositol Hydrolysis in Membranes from Rat Brain Regions , 1992, Journal of neurochemistry.

[30]  S. Kish,et al.  Postmortem cerebral cortex Gs α-subunit levels are elevated in bipolar affective disorder , 1991, Brain Research.

[31]  R. Belmaker,et al.  Hyperfunctional G proteins in mononuclear leukocytes of patients with mania , 1991, Biological Psychiatry.

[32]  H. Lachman,et al.  Differential effect of lithium on fos protooncogene expression mediated by receptor and postreceptor activators of protein kinase C and cyclic adenosine monophosphate: Model for its antimanic action , 1991, Journal of neuroscience research.

[33]  H. Lachman,et al.  Lithium augmentsfos protoonocogene expression in PC12 pheochromocytoma cells: implications for therapeutic action of lithium , 1990, Brain Research.

[34]  S. Nahorski,et al.  Lithium Reduqes the Accumulation or Inositol Polyphosphate Second Messengers Following Cholinergic Stimulation of Cerebral Cortex Slices , 1989 .

[35]  M. Berridge Inositol Trisphosphate, Calcium, Lithium, and Cell Signaling , 1989 .

[36]  Michael J. Berridge,et al.  Inositol phosphates and cell signalling , 1989, Nature.

[37]  S. McClue,et al.  Subacute and Chronic In Vivo Lithium Treatment Inhibits Agonist‐ and Sodium Fluoride‐Stimulated Inositol Phosphate Production in Rat Cortex , 1989, Journal of neurochemistry.

[38]  D. Kendall,et al.  Lithium Selectively Inhibits Muscarinic Receptor‐Stimulated Inositol Tetrakisphosphate Accumulation in Mouse Cerebral Cortex Slices , 1988, Journal of neurochemistry.

[39]  A. Feinberg,et al.  A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. , 1983, Analytical biochemistry.

[40]  H. Wachtel,et al.  Potential antidepressant activity of rolipram and other selective cyclic adenosine 3′,5′-monophosphate phosphodiesterase inhibitors , 1983, Neuropharmacology.

[41]  M. Berridge,et al.  Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. , 1982, The Biochemical journal.

[42]  J. Endicott,et al.  A diagnostic interview: the schedule for affective disorders and schizophrenia. , 1978, Archives of general psychiatry.

[43]  E. Robins,et al.  Research diagnostic criteria: rationale and reliability. , 1978, Archives of general psychiatry.

[44]  G. Tsujimoto,et al.  Recent progress in alpha 1-adrenoceptor pharmacology. , 2002, Biological & pharmaceutical bulletin.

[45]  M. Piascik,et al.  Alpha1-adrenergic receptors: new insights and directions. , 2001, The Journal of pharmacology and experimental therapeutics.

[46]  A. Aleixandre de Artiñano,et al.  Alpha-adrenoceptor subtypes. , 2001, Pharmacological research.

[47]  G. Michelotti,et al.  Alpha 1-adrenergic receptor regulation: basic science and clinical implications. , 2000, Pharmacology & therapeutics.

[48]  R. Duman,et al.  Administration of a cAMP Phosphodiesterase 4 Inhibitor Enhances Antidepressant-Induction of BDNF mRNA in Rat Hippocampus , 2000, Neuropsychopharmacology.

[49]  B. Baum,et al.  Alpha 1-adrenergic and m3-muscarinic receptor stimulation of phosphatidylinositol 4,5-bisphosphate-specific phospholipase C are independently mediated by G alpha q/11 in rat parotid gland membranes. , 1995, Archives of biochemistry and biophysics.

[50]  B. Baum,et al.  α1-Adrenergic and m3-Muscarinic Receptor Stimulation of Phosphatidylinositol 4,5-Bisphosphate-Specific Phospholipase C Are Independently Mediated by Gαq/11 in Rat Parotid Gland Membranes , 1995 .

[51]  S. Kish,et al.  Postmortem cerebral cortex Gs alpha-subunit levels are elevated in bipolar affective disorder. , 1991, Brain research.

[52]  R. Challiss,et al.  Lithium reduces the accumulation of inositol polyphosphate second messengers following cholinergic stimulation of cerebral cortex slices. , 1989, Journal of neurochemistry.

[53]  P. C. Murphy,et al.  Cerebral Cortex , 2017, Cerebral Cortex.