Fractional fundamental lemma and fractional integration by parts formula -- Applications to critical points of Bolza functionals and to linear boundary value problems

In the first part of the paper, we prove a fractional fundamental (du Bois-Reymond) lemma and a fractional variant of the integration by parts formula. The proof of the second result is based on an integral representation of functions possessing Riemann-Liouville fractional derivatives, derived in this paper too. In the second part of the paper, we use the previous results to give necessary optimality conditions of Euler-Lagrange type (with boundary conditions) for fractional Bolza functionals and to prove an existence result for solutions of linear fractional boundary value problems. In the last case we use a Hilbert structure and the Stampacchia theorem.

[1]  Agnieszka B. Malinowska,et al.  Generalized fractional calculus with applications to the calculus of variations , 2012, Comput. Math. Appl..

[2]  Delfim F. M. Torres,et al.  Existence of minimizers for generalized Lagrangian functionals and a necessary optimality condition – Application to fractional variational problems , 2014, Differential and Integral Equations.

[3]  Frank L. Lewis,et al.  Optimal Control , 1986 .

[4]  Delfim F. M. Torres,et al.  Existence of Minimizers for Fractional Variational Problems Containing Caputo Derivatives , 2012, 1208.2363.

[5]  Agnieszka B. Malinowska,et al.  Fractional Variational Calculus with Classical and Combined Caputo Derivatives , 2011, 1101.2932.

[6]  Delfim F. M. Torres,et al.  Fractional Calculus of Variations , 2015 .

[7]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[8]  Delfim F. M. Torres,et al.  Calculus of variations with fractional derivatives and fractional integrals , 2009, Appl. Math. Lett..

[9]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[10]  L. Bourdin Existence of a weak solution for fractional Euler-Lagrange equations , 2012, 1203.1414.

[11]  Riewe,et al.  Nonconservative Lagrangian and Hamiltonian mechanics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  D. Baleanu,et al.  Formulation of Hamiltonian Equations for Fractional Variational Problems , 2005, math-ph/0510029.

[13]  Jacky Cresson,et al.  Fractional embedding of differential operators and Lagrangian systems , 2006, math/0605752.

[14]  Delfim F. M. Torres,et al.  Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α, β) , 2007 .

[15]  I. Podlubny,et al.  Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives , 2005, math-ph/0512028.

[16]  H. Brezis Analyse fonctionnelle : théorie et applications , 1983 .

[17]  Dumitru Baleanu,et al.  Lagrangian Formulation of Classical Fields within Riemann-Liouville Fractional Derivatives , 2005 .

[18]  G. H. Hardy,et al.  Some properties of fractional integrals. I. , 1928 .

[19]  Rafal Kamocki,et al.  On a fractional Dirichlet problem , 2012, 2012 17th International Conference on Methods & Models in Automation & Robotics (MMAR).

[20]  Dariusz Idczak,et al.  On the existence and uniqueness and formula for the solution of R-L fractional cauchy problem in ℝn , 2011 .

[21]  Om P. Agrawal,et al.  Formulation of Euler–Lagrange equations for fractional variational problems , 2002 .

[22]  Delfim F. M. Torres,et al.  Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives , 2010, 1007.2937.

[23]  Delfim F. M. Torres,et al.  Fractional Euler–Lagrange Differential Equations via Caputo Derivatives , 2011, 1109.0658.