A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell’s equations

A Schwarz-type domain decomposition method is presented for the solution of the system of 3d time-harmonic Maxwell?s equations. We introduce a hybridizable discontinuous Galerkin (HDG) scheme for the discretization of the problem based on a tetrahedrization of the computational domain. The discrete system of the HDG method on each subdomain is solved by an optimized sparse direct (LU factorization) solver. The solution of the interface system in the domain decomposition framework is accelerated by a Krylov subspace method. The formulation and the implementation of the resulting DD-HDG (Domain Decomposed-Hybridizable Discontinuous Galerkin) method are detailed. Numerical results show that the resulting DD-HDG solution strategy has an optimal convergence rate and can save both CPU time and memory cost compared to a classical upwind flux-based DD-DG (Domain Decomposed-Discontinuous Galerkin) approach.

[1]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[2]  Jeremy Levesley,et al.  Numerical Mathematics and Advanced Applications 2011 , 2013 .

[3]  Jack J. Dongarra,et al.  Using Mixed Precision for Sparse Matrix Computations to Enhance the Performance while Achieving 64-bit Accuracy , 2008, TOMS.

[4]  Thomas Weiland,et al.  Efficient large scale electromagnetic simulations using dynamically adapted meshes with the discontinuous Galerkin method , 2011, J. Comput. Appl. Math..

[5]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[6]  Chi-Wang Shu,et al.  Locally divergence-free discontinuous Galerkin methods for the Maxwell equations , 2004, Journal of Computational Physics.

[7]  Stéphane Lanteri,et al.  A high-order non-conforming discontinuous Galerkin method for time-domain electromagnetics , 2010, J. Comput. Appl. Math..

[8]  Vipin Kumar,et al.  Parallel Multilevel k-way Partitioning Scheme for Irregular Graphs , 1996, Proceedings of the 1996 ACM/IEEE Conference on Supercomputing.

[9]  Ilaria Perugia,et al.  Mixed discontinuous Galerkin approximation of the Maxwell operator: The indefinite case , 2005 .

[10]  Stéphane Lanteri,et al.  Numerical investigation of a high order hybridizable discontinuous Galerkin method for 2d time‐harmonic Maxwell's equations , 2013 .

[11]  Martin J. Gander,et al.  Optimized Schwarz Methods for Maxwell's Equations , 2006, SIAM J. Sci. Comput..

[12]  Frédéric Magoulès,et al.  Optimal Discrete Transmission Conditions for a Nonoverlapping Domain Decomposition Method for the Helmholtz Equation , 2004, SIAM J. Sci. Comput..

[13]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[14]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[15]  Martin J. Gander,et al.  Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods , 2012 .

[16]  Vipin Kumar,et al.  Parallel Multilevel series k-Way Partitioning Scheme for Irregular Graphs , 1999, SIAM Rev..

[17]  L. Fezoui,et al.  Convergence and stability of a discontinuous galerkin time-domain method for the 3D heterogeneous maxwell equations on unstructured meshes , 2005 .

[18]  Stéphane Lanteri,et al.  Locally implicit discontinuous Galerkin method for time domain electromagnetics , 2010, J. Comput. Phys..

[19]  Stéphane Lanteri,et al.  A hybridizable discontinuous Galerkin method for time-harmonic Maxwell's equations , 2011 .

[20]  Patrick R. Amestoy,et al.  Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .

[21]  Ian Gladwell,et al.  Boundary value problem , 2008, Scholarpedia.

[22]  George Karypis,et al.  Multilevel k-way Partitioning Scheme for Irregular Graphs , 1998, J. Parallel Distributed Comput..

[23]  Mark Rettig,et al.  Preamble , 1996, INTR.

[24]  Kyung-Young Jung,et al.  $\hbox{Au/SiO}_{2}$ Nanoring Plasmon Waveguides at Optical Communication Band , 2007, Journal of Lightwave Technology.

[25]  A. Toselli Domain Decomposition Methods , 2004 .

[26]  Stéphane Lanteri,et al.  A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods , 2008, J. Comput. Phys..

[27]  S. Lanteri,et al.  Optimized Schwarz Algorithms for Solving Time-Harmonic Maxwell's Equations Discretized by a Discontinuous Galerkin Method , 2008, IEEE Transactions on Magnetics.

[28]  Stéphane Lanteri,et al.  A Hybridizable Discontinuous Galerkin Method for Solving 3D Time-Harmonic Maxwell’s Equations , 2013 .

[29]  S. Pisa,et al.  Specific absorption rate and temperature increases in the head of a cellular-phone user , 2000 .

[30]  D. R. Fokkema,et al.  BiCGstab(ell) for Linear Equations involving Unsymmetric Matrices with Complex Spectrum , 1993 .

[31]  Bernardo Cockburn,et al.  Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell's equations , 2011, J. Comput. Phys..

[32]  Ronan Perrussel,et al.  Solution of the time-harmonic Maxwell equations using discontinuous Galerkin methods , 2006, math/0610508.

[33]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[34]  J. Hesthaven,et al.  Nodal high-order methods on unstructured grids , 2002 .