tRNA modification reprogramming contributes to artemisinin resistance in Plasmodium falciparum

[1]  P. Rosenthal,et al.  Emergence, transmission dynamics and mechanisms of artemisinin partial resistance in malaria parasites in Africa. , 2024, Nature reviews. Microbiology.

[2]  Stephen P. H. Alexander,et al.  Advances in malaria pharmacology and the online guide to MALARIA PHARMACOLOGY: IUPHAR review 38 , 2023, British journal of pharmacology.

[3]  A. Hopper,et al.  The life and times of a tRNA , 2023, RNA.

[4]  Z. Zeng,et al.  Emerging roles of tRNA in cancer. , 2023, Cancer letters.

[5]  H. Zhang,et al.  Mitigating the risk of antimalarial resistance via covalent dual-subunit inhibition of the Plasmodium proteasome , 2023, Cell chemical biology.

[6]  D. Ménard,et al.  Ring-stage growth arrest: Metabolic basis of artemisinin tolerance in Plasmodium falciparum , 2022, iScience.

[7]  S. Prigge,et al.  The Plasmodium falciparum apicoplast cysteine desulfurase provides sulfur for both iron-sulfur cluster assembly and tRNA modification , 2022, bioRxiv.

[8]  G. Ma,et al.  The first apicoplast tRNA thiouridylase plays a vital role in the growth of Toxoplasma gondii , 2022, Frontiers in Cellular and Infection Microbiology.

[9]  R. Gregory,et al.  tRNA dysregulation and disease , 2022, Nature Reviews Genetics.

[10]  J. Augereau,et al.  Reactive Oxygen Species as the Brainbox in Malaria Treatment , 2021, Antioxidants.

[11]  J. Augereau,et al.  Resistance to artemisinin in falciparum malaria parasites: A redox-mediated phenomenon. , 2021, Free radical biology & medicine.

[12]  R. Price,et al.  The antimalarial MMV688533 provides potential for single-dose cures with a high barrier to Plasmodium falciparum parasite resistance , 2021, Science Translational Medicine.

[13]  D. Fidock,et al.  Plasmodium falciparum K13 mutations in Africa and Asia impact artemisinin resistance and parasite fitness , 2021, eLife.

[14]  D. Conway,et al.  A heat-shock response regulated by the PfAP2-HS transcription factor protects human malaria parasites from febrile temperatures , 2021, Nature Microbiology.

[15]  C. Amaratunga,et al.  Artemisinin and multidrug-resistant Plasmodium falciparum – a threat for malaria control and elimination , 2021, Current opinion in infectious diseases.

[16]  Juliana M. Sá,et al.  Restructured Mitochondrial-Nuclear Interaction in Plasmodium falciparum Dormancy and Persister Survival after Artemisinin Exposure , 2021, mBio.

[17]  L. Cui,et al.  Plasmodium falciparum resistance to ACTs: Emergence, mechanisms, and outlook , 2021, International journal for parasitology. Drugs and drug resistance.

[18]  Zbynek Bozdech,et al.  Artemisinin-resistant K13 mutations rewire Plasmodium falciparum’s intra-erythrocytic metabolic program to enhance survival , 2021, Nature Communications.

[19]  J. Rayner,et al.  The apicoplast link to fever-survival and artemisinin-resistance in the malaria parasite , 2020, Nature Communications.

[20]  Jongyoon Han,et al.  K13-Mediated Reduced Susceptibility to Artemisinin in Plasmodium falciparum Is Overlaid on a Trait of Enhanced DNA Damage Repair , 2020, Cell reports.

[21]  V. de Crécy-Lagard,et al.  Functions of Bacterial tRNA Modifications: From Ubiquity to Diversity. , 2020, Trends in microbiology.

[22]  Olga Vitek,et al.  MSstatsTMT: Statistical Detection of Differentially Abundant Proteins in Experiments with Isobaric Labeling and Multiple Mixtures , 2020, Molecular & Cellular Proteomics.

[23]  D. Fidock,et al.  Local emergence in Amazonia of Plasmodium falciparum k13 C580Y mutants associated with in vitro artemisinin resistance , 2020, eLife.

[24]  D. Fidock,et al.  Insights into the intracellular localization, protein associations and artemisinin resistance properties of Plasmodium falciparum K13 , 2020, PLoS pathogens.

[25]  L. Cui,et al.  Role of Plasmodium falciparum Kelch 13 Protein Mutations in P. falciparum Populations from Northeastern Myanmar in Mediating Artemisinin Resistance , 2020, mBio.

[26]  B. Bergmann,et al.  A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites , 2020, Science.

[27]  S. Ralph,et al.  Decreased K13 Abundance Reduces Hemoglobin Catabolism and Proteotoxic Stress, Underpinning Artemisinin Resistance. , 2019, Cell reports.

[28]  Sunil Laxman,et al.  tRNA wobble-uridine modifications as amino acid sensors and regulators of cellular metabolic state , 2019, Current Genetics.

[29]  L. Sibley,et al.  Protozoan persister-like cells and drug treatment failure , 2019, Nature Reviews Microbiology.

[30]  Premal Shah,et al.  A tRNA modification balances carbon and nitrogen metabolism by regulating phosphate homeostasis , 2019, eLife.

[31]  E. Winzeler,et al.  Covalent Plasmodium falciparum-selective proteasome inhibitors exhibit a low propensity for generating resistance in vitro and synergize with multiple antimalarial agents , 2019, PLoS pathogens.

[32]  D. Pain,et al.  Mitochondria export iron–sulfur and sulfur intermediates to the cytoplasm for iron–sulfur cluster assembly and tRNA thiolation in yeast , 2019, The Journal of Biological Chemistry.

[33]  P. R. Rajamohanan,et al.  Evaluating antimalarial efficacy by tracking glycolysis in Plasmodium falciparum using NMR spectroscopy , 2018, Scientific Reports.

[34]  P. Preiser,et al.  tRNA epitranscriptomics and biased codon are linked to proteome expression in Plasmodium falciparum , 2018, Molecular systems biology.

[35]  D. Goldberg,et al.  Assessment of Biological Role and Insight into Druggability of the Plasmodium falciparum Protease Plasmepsin V , 2018, bioRxiv.

[36]  S. Ralph,et al.  Artemisinin kills malaria parasites by damaging proteins and inhibiting the proteasome , 2018, Nature Communications.

[37]  F. Nosten,et al.  Fitness Costs and the Rapid Spread of kelch13-C580Y Substitutions Conferring Artemisinin Resistance , 2018, Antimicrobial Agents and Chemotherapy.

[38]  D. Pain,et al.  Mitochondria Export Sulfur Species Required for Cytosolic tRNA Thiolation. , 2018, Cell chemical biology.

[39]  Sebastian A. Leidel,et al.  Codon-specific translation reprogramming promotes resistance to targeted therapy , 2018, Nature.

[40]  J. Rayner,et al.  Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis , 2018, Science.

[41]  M. Garber,et al.  Transcriptome-wide Analysis of Roles for tRNA Modifications in Translational Regulation. , 2017, Molecular cell.

[42]  Ana Rodriguez,et al.  Inhibiting the Plasmodium eIF2α Kinase PK4 Prevents Artemisinin-Induced Latency. , 2017, Cell host & microbe.

[43]  S. Ranganathan,et al.  Celebrating wobble decoding: Half a century and still much is new , 2017, RNA biology.

[44]  R. Fisher,et al.  Persistent bacterial infections and persister cells , 2017, Nature Reviews Microbiology.

[45]  Adrian S. Russell,et al.  Multi-omics Based Identification of Specific Biochemical Changes Associated With PfKelch13-Mutant Artemisinin-Resistant Plasmodium falciparum , 2017, The Journal of infectious diseases.

[46]  M. Nakai,et al.  Sulfur Modifications of the Wobble U34 in tRNAs and their Intracellular Localization in Eukaryotic Cells , 2017, Biomolecules.

[47]  Skorn Mongkolsuk,et al.  Methylation at position 32 of tRNA catalyzed by TrmJ alters oxidative stress response in Pseudomonas aeruginosa , 2016, Nucleic acids research.

[48]  C. Rogier,et al.  A Worldwide Map of Plasmodium falciparum K13-Propeller Polymorphisms. , 2016, The New England journal of medicine.

[49]  A. Hopper,et al.  Multiple Layers of Stress-Induced Regulation in tRNA Biology , 2016, Life.

[50]  Thomas J. Begley,et al.  Trm9-Catalyzed tRNA Modifications Regulate Global Protein Expression by Codon-Biased Translation , 2015, PLoS genetics.

[51]  F. Ariey,et al.  Induction of Multidrug Tolerance in Plasmodium falciparum by Extended Artemisinin Pressure , 2015, Emerging infectious diseases.

[52]  M. Gatton,et al.  Mitochondrial Membrane Potential in a Small Subset of Artemisinin-Induced Dormant Plasmodium falciparum Parasites In Vitro. , 2015, The Journal of infectious diseases.

[53]  Sebastian A. Leidel,et al.  Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity , 2015, Cell.

[54]  Thomas J. Begley,et al.  Codon-biased translation can be regulated by wobble-base tRNA modification systems during cellular stress responses , 2015, RNA biology.

[55]  Scott Emrich,et al.  A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria , 2015, Nature.

[56]  D. Kyle,et al.  Artemisinin-Resistant Plasmodium falciparum Parasites Exhibit Altered Patterns of Development in Infected Erythrocytes , 2015, Antimicrobial Agents and Chemotherapy.

[57]  Clement T Y Chan,et al.  Highly Predictive Reprogramming of tRNA Modifications Is Linked to Selective Expression of Codon-Biased Genes , 2015, Chemical research in toxicology.

[58]  D. Fidock,et al.  K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates , 2015, Science.

[59]  D. Kwiatkowski,et al.  Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance , 2015, Science.

[60]  Gilean McVean,et al.  Genetic architecture of artemisinin-resistant Plasmodium falciparum , 2015, Nature Genetics.

[61]  H. Ploegh,et al.  tRNA thiolation links translation to stress responses in Saccharomyces cerevisiae , 2015, Molecular biology of the cell.

[62]  M. Armengod,et al.  Modification of the wobble uridine in bacterial and mitochondrial tRNAs reading NNA/NNG triplets of 2-codon boxes , 2014, RNA biology.

[63]  Thomas J. Begley,et al.  tRNA modifications regulate translation during cellular stress , 2014, FEBS letters.

[64]  M. Bogyo,et al.  Identification of Potent and Selective Non-covalent Inhibitors of the Plasmodium falciparum Proteasome , 2014, Journal of the American Chemical Society.

[65]  Sebastian M. Waszak,et al.  A Dual Program for Translation Regulation in Cellular Proliferation and Differentiation , 2014, Cell.

[66]  G. Björk,et al.  Transfer RNA Modification: Presence, Synthesis, and Function , 2014, EcoSal Plus.

[67]  E. Batlle,et al.  Role of tRNA modifications in human diseases. , 2014, Trends in molecular medicine.

[68]  C. MacPherson,et al.  Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system , 2014, Nature Biotechnology.

[69]  Naoki Shigi Biosynthesis and functions of sulfur modifications in tRNA , 2014, Front. Genet..

[70]  Thomas J. Begley,et al.  A System of RNA Modifications and Biased Codon Use Controls Cellular Stress Response at the Level of Translation , 2014, Chemical research in toxicology.

[71]  B. Genton,et al.  A molecular marker of artemisinin-resistant Plasmodium falciparum malaria , 2013, Nature.

[72]  B. Tu,et al.  Sulfur Amino Acids Regulate Translational Capacity and Metabolic Homeostasis through Modulation of tRNA Thiolation , 2013, Cell.

[73]  J. Collins,et al.  Microbial persistence and the road to drug resistance. , 2013, Cell host & microbe.

[74]  Saorin Kim,et al.  Reduced Artemisinin Susceptibility of Plasmodium falciparum Ring Stages in Western Cambodia , 2012, Antimicrobial Agents and Chemotherapy.

[75]  Qin Cheng,et al.  Artemisinin resistance in Plasmodium falciparum: A process linked to dormancy? , 2012, International journal for parasitology. Drugs and drug resistance.

[76]  Clement T Y Chan,et al.  Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins , 2012, Nature Communications.

[77]  M. Gatton,et al.  Phenotypic Changes in Artemisinin-Resistant Plasmodium falciparum Lines In Vitro: Evidence for Decreased Sensitivity to Dormancy and Growth Inhibition , 2011, Antimicrobial Agents and Chemotherapy.

[78]  Bruce Russell,et al.  Artemisinin resistance in Plasmodium falciparum is associated with an altered temporal pattern of transcription , 2011, BMC Genomics.

[79]  Michael A. Gilchrist,et al.  Explaining complex codon usage patterns with selection for translational efficiency, mutation bias, and genetic drift , 2011, Proceedings of the National Academy of Sciences.

[80]  A. Hopper,et al.  tRNA biology charges to the front. , 2010, Genes & development.

[81]  X. Su,et al.  Increased Tolerance to Artemisinin in Plasmodium falciparum Is Mediated by a Quiescence Mechanism , 2010, Antimicrobial Agents and Chemotherapy.

[82]  Yoshiho Ikeuchi,et al.  Snapshots of tRNA sulphuration via an adenylated intermediate , 2006, Nature.

[83]  Tsutomu Suzuki,et al.  Mechanistic insights into sulfur relay by multiple sulfur mediators involved in thiouridine biosynthesis at tRNA wobble positions. , 2006, Molecular cell.

[84]  G. Hunt,et al.  Report , 2004 .

[85]  G. Sprague,,et al.  Attachment of the Ubiquitin-Related Protein Urm1p to the Antioxidant Protein Ahp1p , 2003, Eukaryotic Cell.

[86]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[87]  D. Fidock,et al.  Cycloguanil and its parent compound proguanil demonstrate distinct activities against Plasmodium falciparum malaria parasites transformed with human dihydrofolate reductase. , 1998, Molecular pharmacology.

[88]  H. D. del Portillo,et al.  Malaria parasites contain two identical copies of an elongation factor 1 alpha gene. , 1998, Molecular and biochemical parasitology.

[89]  L. Gerena,et al.  Mechanism-based design, synthesis, and in vitro antimalarial testing of new 4-methylated trioxanes structurally related to artemisinin: the importance of a carbon-centered radical for antimalarial activity. , 1994, Journal of medicinal chemistry.

[90]  J. Plotkin,et al.  Synonymous but not the same: the causes and consequences of codon bias , 2011, Nature Reviews Genetics.