Detection of the Far-infrared [O iii] and Dust Emission in a Galaxy at Redshift 8.312: Early Metal Enrichment in the Heart of the Reionization Era

We present the Atacama Large Millimeter/submillimeter Array detection of the [O iii] 88 μm line and rest-frame 90 μm dust continuum emission in a Y-dropout Lyman break galaxy (LBG), MACS0416_Y1 lying behind the Frontier Field cluster MACS J0416.1−2403. This [O iii] detection confirms the LBG with a spectroscopic redshift of z = 8.3118 ± 0.0003, making this object one of the farthest galaxies ever identified spectroscopically. The observed 850 μm flux density of 137 ± 26 μJy corresponds to a de-lensed total infrared (IR) luminosity of if assuming a dust temperature of Tdust = 50 K and an emissivity index of β = 1.5, yielding a large dust mass of . The ultraviolet-to-far-IR spectral energy distribution modeling where the [O iii] emissivity model is incorporated suggests the presence of a young (τage ≈ 4 Myr), star-forming ( yr−1), moderately metal-polluted (Z ≈ 0.2Z⊙) stellar component with a mass of Mstar = 3 × 108 M⊙. An analytic dust mass evolution model with a single episode of star formation does not reproduce the metallicity and dust mass in τage ≈ 4 Myr, suggesting a pre-existing evolved stellar component with Mstar ∼ 3 × 109 M☉ and τage ∼ 0.3 Gyr as the origin of the dust mass.

[1]  R. Pelló,et al.  The onset of star formation 250 million years after the Big Bang , 2018, Nature.

[2]  H. Rix,et al.  No Evidence for Enhanced [O iii] 88 μm Emission in a z ∼ 6 Quasar Compared to Its Companion Starbursting Galaxy , 2018, The Astrophysical Journal.

[3]  Mauricio Solar,et al.  Astronomical data analysis software and systems , 2018, Astron. Comput..

[4]  R. Ellis,et al.  Spectroscopic Constraints on UV Metal Line Emission at z ≃ 6 − 9 The Nature of Lyα Emitting Galaxies in the Reionization-Era , 2018, Monthly Notices of the Royal Astronomical Society.

[5]  S. Veilleux,et al.  SHINING, A Survey of Far-infrared Lines in Nearby Galaxies. II. Line-deficit Models, AGN Impact, [C ii]–SFR Scaling Relations, and Mass–Metallicity Relation in (U)LIRGs , 2018, The Astrophysical Journal.

[6]  R. Davies,et al.  SHINING, A Survey of Far-infrared Lines in Nearby Galaxies. I. Survey Description, Observational Trends, and Line Diagnostics , 2018, The Astrophysical Journal.

[7]  A. Sarangi,et al.  Dust in Supernovae and Supernova Remnants II: Processing and Survival , 2018, Supernovae.

[8]  A. Weiss,et al.  Detection of [O iii] at z ∼ 3: A Galaxy Above the Main Sequence, Rapidly Assembling Its Stellar Mass , 2018, 1803.01839.

[9]  Florida,et al.  Galaxy growth in a massive halo in the first billion years of cosmic history , 2017, Nature.

[10]  M. Oguri,et al.  Full-data Results of Hubble Frontier Fields: UV Luminosity Functions at z ∼ 6–10 and a Consistent Picture of Cosmic Reionization , 2017, 1702.04867.

[11]  H. Rix,et al.  Copious Amounts of Dust and Gas in a z = 7.5 Quasar Host Galaxy , 2017, 1712.01886.

[12]  R. Bouwens,et al.  The Dearth of z ∼ 10 Galaxies in All HST Legacy Fields—The Rapid Evolution of the Galaxy Population in the First 500 Myr , 2017, 1710.11131.

[13]  A. Evans,et al.  A Herschel/PACS Far-infrared Line Emission Survey of Local Luminous Infrared Galaxies , 2017, 1705.04326.

[14]  R. Ellis,et al.  Dust in the Reionization Era: ALMA Observations of a z = 8.38 Gravitationally Lensed Galaxy , 2017, 1703.02039.

[15]  J. Diego,et al.  Young Galaxy Candidates in the Hubble Frontier Fields. IV. MACS J1149.5+2223 , 2017, 1701.08484.

[16]  A. Fontana,et al.  Extended ionised and clumpy gas in a normal galaxy at z=7.1 revealed by ALMA , 2017, 1701.03468.

[17]  J. Rho,et al.  The dust mass in Cassiopeia A from a spatially resolved Herschel analysis , 2016, 1611.00774.

[18]  S. Maddox,et al.  Herschel-ATLAS: Revealing dust build-up and decline across gas, dust and stellar mass selected samples - I. Scaling relations , 2016, 1610.01038.

[19]  R. Bouwens,et al.  The ALMA Frontier Fields Survey. I. 1.1 mm continuum detections in Abell 2744, MACS J0416.1-2403 and MACS J1149.5+2223 , 2016, 1607.03808.

[20]  R. Bouwens,et al.  Lyα and C iii] emission in z = 7–9 Galaxies: accelerated reionization around luminous star-forming systems? , 2016, 1606.01304.

[21]  J. Anderson,et al.  The Frontier Fields: Survey Design and Initial Results , 2016, 1605.06567.

[22]  D. Stark Galaxies in the First Billion Years After the Big Bang , 2016 .

[23]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[24]  N. Yoshida,et al.  Detection of an oxygen emission line from a high-redshift galaxy in the reionization epoch , 2016, Science.

[25]  B. Hilbert,et al.  The Frontier Fields: Survey Design , 2016 .

[26]  Jia-Sheng Huang,et al.  Possible identification of massive and evolved galaxies At z > 5 , 2016, 1603.08394.

[27]  V. A. Bruce,et al.  The ASTRODEEP Frontier Fields catalogues - II. Photometric redshifts and rest frame properties in Abell-2744 and MACS-J0416 , 2016, 1603.02461.

[28]  R. Bouwens,et al.  A REMARKABLY LUMINOUS GALAXY AT Z = 11.1 MEASURED WITH HUBBLE SPACE TELESCOPE GRISM SPECTROSCOPY , 2016, 1603.00461.

[29]  I. P'erez-Fournon,et al.  YOUNG GALAXY CANDIDATES IN THE HUBBLE FRONTIER FIELDS. III. MACS J0717.5+3745 , 2016, 1602.02775.

[30]  M. Oguri,et al.  PRECISE STRONG LENSING MASS MODELING OF FOUR HUBBLE FRONTIER FIELD CLUSTERS AND A SAMPLE OF MAGNIFIED HIGH-REDSHIFT GALAXIES , 2015, 1510.06400.

[31]  J. Diego,et al.  YOUNG GALAXY CANDIDATES IN THE HUBBLE FRONTIER FIELDS. II. MACS J0416–2403 , 2015, 1510.07084.

[32]  A. Fontana,et al.  ULTRA-DEEP KS-BAND IMAGING OF THE HUBBLE FRONTIER FIELDS , 2015, 1606.07450.

[33]  R. Bouwens,et al.  Lyα EMISSION FROM A LUMINOUS z = 8.68 GALAXY: IMPLICATIONS FOR GALAXIES AS TRACERS OF COSMIC REIONIZATION , 2015, 1507.02679.

[34]  A. Zitrin,et al.  A PILOT SURVEY FOR C III] EMISSION IN THE REIONIZATION ERA: GRAVITATIONALLY LENSED z ∼ 7–8 GALAXIES IN THE FRONTIER FIELDS CLUSTER ABELL 2744 , 2015, 1504.07686.

[35]  B. Robertson,et al.  Spectroscopic detection of C iv λ1548 in a galaxy at z = 7.045: implications for the ionizing spectra of reionization-era galaxies , 2015, 1504.06881.

[36]  M. Michałowski Dust production 680-850 million years after the Big Bang , 2015, 1503.08210.

[37]  A dusty, normal galaxy in the epoch of reionization , 2015, Nature.

[38]  A. Fontana,et al.  The assembly of ‘normal’ galaxies at z ∼ 7 probed by ALMA , 2015, 1502.06634.

[39]  S. Maddox,et al.  Herschel-ATLAS: the surprising diversity of dust-selected galaxies in the local submillimetre Universe , 2015, Monthly Notices of the Royal Astronomical Society.

[40]  V. Doublier,et al.  The Herschel Dwarf Galaxy Survey - I. Properties of the low-metallicity ISM from PACS spectroscopy , 2015, 1502.03131.

[41]  W. Kausch,et al.  Molecfit: A general tool for telluric absorption correction - II. Quantitative evaluation on ESO-VLT/X-Shooterspectra , 2015, 1501.07265.

[42]  J. Dunlop,et al.  New redshift z ≃ 9 galaxies in the Hubble Frontier Fields: implications for early evolution of the UV luminosity density , 2014, 1412.1472.

[43]  I. P'erez-Fournon,et al.  Frontier Fields: Combining HST, VLT, and Spitzer data to explore the z ~ 8 Universe behind the lensing cluster MACSJ0416.1−2403 , 2014, 1412.1089.

[44]  T. Takeuchi,et al.  Evolution of grain size distribution in high-redshift dusty quasars: integrating large amounts of dust and unusual extinction curves , 2014, 1410.7861.

[45]  B. Robertson,et al.  Spectroscopic detections of C iii] λ1909 Å at z ≃ 6–7: a new probe of early star-forming galaxies and cosmic reionization , 2014, 1408.3649.

[46]  M. Sauvage,et al.  Revealing the cold dust in low-metallicity environments (Corrigendum) , 2015 .

[47]  R. Bouwens,et al.  HIGH-PRECISION PHOTOMETRIC REDSHIFTS FROM SPITZER/IRAC: EXTREME [3.6] – [4.5] COLORS IDENTIFY GALAXIES IN THE REDSHIFT RANGE z ∼ 6.6 – 6.9 , 2014, 1412.0663.

[48]  R. Indebetouw,et al.  A Stubbornly Large Mass of Cold Dust in the Ejecta of Supernova 1987A , 2015 .

[49]  M. Franx,et al.  UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.

[50]  E. Pellegrini,et al.  The applicability of far-infrared fine-structure lines as star formation rate tracers over wide ranges of metallicities and galaxy types , 2014, 1402.4075.

[51]  T. U. O. Tokyo,et al.  An updated analytic model for attenuation by the intergalactic medium , 2014, 1402.0677.

[52]  T. Takeuchi,et al.  Evolution of extinction curves in galaxies , 2014, 1401.7121.

[53]  Svitlana Zhukovska,et al.  Dust origin in late-type dwarf galaxies: ISM growth vs. type II supernovae , 2014, 1401.1675.

[54]  N. Yoshida,et al.  Physical properties of UDF12 galaxies in cosmological simulations , 2013, 1310.0114.

[55]  D. Burrows,et al.  DUST PRODUCTION AND PARTICLE ACCELERATION IN SUPERNOVA 1987A REVEALED WITH ALMA , 2013, 1312.4086.

[56]  N. Yoshida,et al.  ALMA WILL DETERMINE THE SPECTROSCOPIC REDSHIFT z > 8 WITH FIR [O iii] EMISSION LINES , 2013, 1312.0684.

[57]  H. Roussel,et al.  An Overview of the Dwarf Galaxy Survey , 2013, 1305.2628.

[58]  T. Takeuchi,et al.  What determines the grain size distribution in galaxies , 2013, 1303.5528.

[59]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[60]  E. Dwek,et al.  THE IMPORTANCE OF PHYSICAL MODELS FOR DERIVING DUST MASSES AND GRAIN SIZE DISTRIBUTIONS IN SUPERNOVA EJECTA. I. RADIATIVELY HEATED DUST IN THE CRAB NEBULA , 2013, 1302.5452.

[61]  B. Groves,et al.  ON THE EFFECT OF THE COSMIC MICROWAVE BACKGROUND IN HIGH-REDSHIFT (SUB-)MILLIMETER OBSERVATIONS , 2013, The Astrophysical Journal.

[62]  Akio K. Inoue,et al.  Dust formation history of galaxies: A critical role of metallicity* for the dust mass growth by accreting materials in the interstellar medium , 2012, Earth, Planets and Space.

[63]  O. Krause,et al.  A COOL DUST FACTORY IN THE CRAB NEBULA: A HERSCHEL STUDY OF THE FILAMENTS , 2012, 1209.5677.

[64]  R. Bouwens,et al.  THE SPECTRAL ENERGY DISTRIBUTIONS OF z ∼ 8 GALAXIES FROM THE IRAC ULTRA DEEP FIELDS: EMISSION LINES, STELLAR MASSES, AND SPECIFIC STAR FORMATION RATES AT 650 MYR , 2012, 1209.3037.

[65]  S. Maddox,et al.  Herschel-ATLAS : Multi-wavelength SEDs and physical properties of 250 μm selected galaxies at z <0.5 , 2012, 1208.3079.

[66]  Liverpool John Moores University,et al.  DETECTION OF ATOMIC CARBON [C ii] 158 μm AND DUST EMISSION FROM A z = 7.1 QUASAR HOST GALAXY , 2012, 1203.5844.

[67]  R. Manuputy,et al.  X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope , 2011, 1110.1944.

[68]  A. Inoue The origin of dust in galaxies revisited: the mechanism determining dust content , 2011, 1202.2932.

[69]  J. Hjorth,et al.  Production of dust by massive stars at high redshift , 2011, 1108.0403.

[70]  M. Sauvage,et al.  Herschel Detects a Massive Dust Reservoir in Supernova 1987A , 2011, Science.

[71]  O. Lahav,et al.  THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW , 2011, 1106.3328.

[72]  Joseph A. Nuth,et al.  Dust destruction in the ISM: a re-evaluation of dust lifetimes , 2011 .

[73]  Gunma Astronomical Observatory,et al.  Widely Extended [OIII] 88 um Line Emission around the 30 Doradus Region Revealed with AKARI FIS-FTS , 2011, 1105.5929.

[74]  S. Maddox,et al.  Physical conditions of the interstellar medium of high-redshift, strongly lensed submillimetre galaxies from the Herschel-ATLAS★ , 2011, Monthly Notices of the Royal Astronomical Society.

[75]  A. Inoue Rest-frame ultraviolet-to-optical spectral characteristics of extremely metal-poor and metal-free galaxies , 2011, 1102.5150.

[76]  Sabine Moehler,et al.  The X-shooter pipeline , 2010, Astronomical Telescopes + Instrumentation.

[77]  O. Krause,et al.  A Herschel PACS and SPIRE study of the dust content of the Cassiopeia A supernova remnant , 2010, 1005.2688.

[78]  K. Coppin,et al.  Herschel and SCUBA-2 imaging and spectroscopy of a bright, lensed submillimetre galaxy at z = 2.3 , 2010, 1005.1071.

[79]  G. J. Stacey,et al.  FIRST DETECTION OF THE [O iii] 88 μm LINE AT HIGH REDSHIFTS: CHARACTERIZING THE STARBURST AND NARROW-LINE REGIONS IN EXTREME LUMINOSITY SYSTEMS , 2010, 1003.4296.

[80]  S. Charlot,et al.  New insight into the relation between star formation activity and dust content in galaxies , 2010, 1001.2309.

[81]  E. Grün,et al.  Cosmic Dust - Near and Far , 2009 .

[82]  B. Weiner,et al.  DETERMINING STAR FORMATION RATES FOR INFRARED GALAXIES , 2008, 0810.4150.

[83]  S. Maddox,et al.  Cassiopeia A: dust factory revealed via submillimetre polarimetry , 2008, 0809.0887.

[84]  G. Helou,et al.  A Compendium of Far-Infrared Line and Continuum Emission for 227 Galaxies Observed by the Infrared Space Observatory , 2008, 0805.2930.

[85]  M. Trieloff,et al.  Evolution of interstellar dust and stardust in the solar neighbourhood , 2007, 0706.1155.

[86]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[87]  L. Dunne,et al.  The Origin of Cosmic Dust , 2003, astro-ph/0307320.

[88]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[89]  J. Weingartner,et al.  Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud , 2001 .

[90]  J. Weingartner,et al.  Dust Grain Size Distributions and Extinction in the Milky Way, LMC, and SMC , 2000, astro-ph/0008146.

[91]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[92]  E. Dwek The Evolution of the Elemental Abundances in the Gas and Dust Phases of the Galaxy , 1997, astro-ph/9707024.

[93]  K. Liffman,et al.  Stochastic evolution of refractory interstellar dust during the chemical evolution of a two-phase interstellar medium , 1989 .

[94]  H. Okuda,et al.  FAR-INFRARED O III FINE-STRUCTURE LINES AND IONIZATION STRUCTURE OF RCW 38. , 1987 .

[95]  D. Massa,et al.  An analysis of the shapes of ultraviolet extinction curves. I - The 2175 A bump , 1986 .

[96]  E. Salpeter,et al.  Destruction mechanisms for interstellar dust , 1979 .

[97]  M. Seaton,et al.  Interstellar extinction in the UV , 1979 .