Self-organized criticality and the dynamics of near-marginal turbulent transport in magnetically confined fusion plasmas

The high plasma temperatures expected at reactor conditions in magnetic confinement fusion toroidal devices suggest that near-marginal operation could be a reality in future devices and reactors. By near-marginal it is meant that the plasma profiles might wander around the local critical thresholds for the onset of instabilities. Self-organized criticality (SOC) was suggested in the mid 1990s as a more proper paradigm to describe the dynamics of tokamak plasma transport in near-marginal conditions. It advocated that, near marginality, the evolution of mean profiles and fluctuations should be considered simultaneously, in contrast to the more common view of a large separation of scales existing between them. Otherwise, intrinsic features of near-marginal transport would be missed, that are of importance to understand the properties of energy confinement. In the intervening 20 years, the relevance of the idea of SOC for near-marginal transport in fusion plasmas has transitioned from an initial excessive hype to the much more realistic standing of today, which we will attempt to examine critically in this review paper. First, the main theoretical ideas behind SOC will be described. Secondly, how they might relate to the dynamics of near-marginal transport in real magnetically confined plasmas will be discussed. Next, we will review what has been learnt about SOC from various numerical studies and what it has meant for the way in which we do numerical simulation of fusion plasmas today. Then, we will discuss the experimental evidence available from the several experiments that have looked for SOC dynamics in fusion plasmas. Finally, we will conclude by identifying the various problems that still remain open to investigation in this area. Special attention will be given to the discussion of frequent misconceptions and ongoing controversies. The review also contains a description of ongoing efforts that seek effective transport models better suited than traditional equations to capture SOC dynamics. Most of these models, based on the use of fractional transport equations and related concepts, could prove useful both in reactor operation and experiment control and design.

[1]  A. Fasoli,et al.  Nondiffusive transport regimes for suprathermal ions in turbulent plasmas. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  P. Diamond,et al.  Finding the elusive E×B staircase in magnetized plasmas. , 2015, Physical review letters.

[3]  Kimitaka Itoh,et al.  Towards an emerging understanding of non-locality phenomena and non-local transport , 2015 .

[4]  R. Sánchez,et al.  Transport equation describing fractional Lévy motion of suprathermal ions in TORPEX , 2014 .

[5]  E. Sánchez,et al.  The use of the biorthogonal decomposition for the identification of zonal flows at TJ-II , 2014, 1408.1845.

[6]  R. Sánchez,et al.  Characterization of radial turbulent fluxes in the Santander linear plasma machine , 2014 .

[7]  X. Garbet,et al.  Fusion plasma turbulence described by modified sandpile dynamics , 2014, The European Physical Journal E.

[8]  J. Rice,et al.  Rotation and momentum transport in tokamaks and helical systems , 2014 .

[9]  Yasuhiro Idomura,et al.  Plasma size and collisionality scaling of ion-temperature-gradient-driven turbulence , 2013 .

[10]  G. Staebler,et al.  Observation of a critical gradient threshold for electron temperature fluctuations in the DIII-D Tokamak. , 2012, Physical review letters.

[11]  X. Garbet,et al.  Self-consistent dynamics of impurities in magnetically confined plasmas: turbulence intermittency and nondiffusive transport. , 2012, Physical review letters.

[12]  G. Pruessner Self-Organised Criticality: Theory, Models and Characterisation , 2012 .

[13]  W. A. Cooper,et al.  Overview of the RFX-mod fusion science programme , 2012 .

[14]  Hogun Jhang,et al.  A statistical analysis of avalanching heat transport in stationary enhanced core confinement regimes , 2012 .

[15]  J. Maggs,et al.  Origin of Lorentzian pulses in deterministic chaos. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Physics of intrinsic rotation in flux-driven ITG turbulence , 2012 .

[17]  B. V. van Milligen,et al.  Relevance of uncorrelated Lorentzian pulses for the interpretation of turbulence in the edge of magnetically confined toroidal plasmas. , 2012, Physical review letters.

[18]  P. Diamond,et al.  On the mechanism for edge localized mode mitigation by supersonic molecular beam injection , 2012 .

[19]  Yasuhiro Idomura,et al.  Plasma size scaling of avalanche-like heat transport in tokamaks , 2012 .

[20]  S. R. Lopes,et al.  Self-organized criticality in MHD driven plasma edge turbulence , 2012 .

[21]  R. Prosmiti,et al.  Frequency domain description of Kohlrausch response through a pair of Havriliak-Negami-type functions: an analysis of functional proximity. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  J. Maggs,et al.  Generality of deterministic chaos, exponential spectra, and Lorentzian pulses in magnetically confined plasmas. , 2011, Physical review letters.

[23]  Alberto Bottino,et al.  Predictions on heat transport and plasma rotation from global gyrokinetic simulations , 2011 .

[24]  U. Stroth,et al.  Observation of exponential spectra and Lorentzian pulses in the TJ-K stellarator , 2011 .

[25]  Influence of β on the self-similarity properties of LHD edge fluctuations , 2011 .

[26]  J. Leboeuf,et al.  Nature of turbulent transport across sheared zonal flows: insights from gyrokinetic simulations , 2011 .

[27]  Virginie Grandgirard,et al.  Neoclassical physics in full distribution function gyrokinetics , 2011 .

[28]  James Myra,et al.  Convective transport by intermittent blob-filaments: Comparison of theory and experiment , 2011 .

[29]  Laurent Villard,et al.  Flux- and gradient-driven global gyrokinetic simulation of tokamak turbulence , 2011 .

[30]  L Chacón,et al.  Local and nonlocal parallel heat transport in general magnetic fields. , 2010, Physical review letters.

[31]  Markus J. Aschwanden,et al.  Self-Organized Criticality in Astrophysics , 2011 .

[32]  P. Mantica,et al.  Perturbative studies of transport phenomena in fusion devices , 2010 .

[33]  P. Diamond,et al.  On the validity of the local diffusive paradigm in turbulent plasma transport. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Astronomy,et al.  A self-organized criticality model for ion temperature gradient mode driven turbulence in confined plasma , 2010, 1007.0712.

[35]  Virginie Grandgirard,et al.  Large scale dynamics in flux driven gyrokinetic turbulence , 2010 .

[36]  M. Barnes,et al.  Direct multiscale coupling of a transport code to gyrokinetic turbulence codes , 2009, 0912.1974.

[37]  Lionello Marrelli,et al.  Nonlocal transport in the reversed field pinch , 2009 .

[38]  C. Watts,et al.  The HelCat dual-source plasma device. , 2009, The Review of scientific instruments.

[39]  Choong-Seock Chang,et al.  Full-f gyrokinetic particle simulation of centrally heated global ITG turbulence from magnetic axis to edge pedestal top in a realistic tokamak geometry , 2009 .

[40]  X. Garbet,et al.  Interplay between gyrokinetic turbulence, flows, and collisions: perspectives on transport and poloidal rotation. , 2009, Physical review letters.

[41]  Shinji Tokuda,et al.  Study of ion turbulent transport and profile formations using global gyrokinetic full-f Vlasov simulation , 2009 .

[42]  B. Milligen,et al.  Analysis of the radial transport of tracers in a turbulence simulation , 2009 .

[43]  Volker Naulin,et al.  Physics of non-diffusive turbulent transport of momentum and the origins of spontaneous rotation in tokamaks , 2009 .

[44]  B. Carreras,et al.  Fractional Lévy motion through path integrals , 2008, 0805.1838.

[45]  D. Pace,et al.  Exponential frequency spectrum and Lorentzian pulses in magnetized plasmas , 2008 .

[46]  D E Newman,et al.  Nature of transport across sheared zonal flows in electrostatic ion-temperature-gradient gyrokinetic plasma turbulence. , 2008, Physical review letters.

[47]  Benjamin A. Carreras,et al.  On the nature of transport in near-critical dissipative-trapped-electron-mode turbulence: Effect of a subdominant diffusive channel , 2008 .

[48]  R. Sánchez,et al.  Characterization of nondiffusive transport in plasma turbulence via a novel Lagrangian method. , 2008, Physical review letters.

[49]  Shinji Tokuda,et al.  Conservative global gyrokinetic toroidal full-f five-dimensional Vlasov simulation , 2008, Comput. Phys. Commun..

[50]  Iberê L. Caldas,et al.  Multifractality in plasma edge electrostatic turbulence , 2008 .

[51]  Jet Efda Contributors,et al.  Fractional diffusion models of non-local perturbative transport: numerical results and application to JET experiments , 2008 .

[52]  Laurent Villard,et al.  Long global gyrokinetic simulations: Source terms and particle noise control , 2008 .

[53]  M. Rajković,et al.  Characterization of local turbulence in magnetic confinement devices , 2008 .

[54]  A. Noullez,et al.  A model for two-dimensional bursty turbulence in magnetized plasmas , 2008 .

[55]  F. Wagner,et al.  A quarter-century of H-mode studies , 2007 .

[56]  F. Jenko,et al.  E×B advection of trace ions in tokamak microturbulence , 2007 .

[57]  T. Fujita,et al.  Chapter 2: Plasma confinement and transport , 2007 .

[58]  C. Bourdelle,et al.  Fluid simulations of turbulent impurity transport , 2007 .

[59]  V. Lynch,et al.  Pulse propagation in a simple probabilistic transport model , 2007 .

[60]  D. Newman,et al.  Persistent dynamic correlations in self-organized critical systems away from their critical point , 2005, cond-mat/0503159.

[61]  Jet Efda Contributors,et al.  Electron heat transport studies , 2006 .

[62]  Guosheng Xu,et al.  Multiscale coherent structures in tokamak plasma turbulence , 2006 .

[63]  R. Sánchez,et al.  Study of the interaction between diffusive and avalanche-like transport in near-critical dissipative-trapped-electron-mode turbulence , 2006 .

[64]  Laurent Villard,et al.  A drift-kinetic Semi-Lagrangian 4D code for ion turbulence simulation , 2006, J. Comput. Phys..

[65]  V. Lynch,et al.  Renormalization of tracer turbulence leading to fractional differential equations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  Diego del-Castillo-Negrete,et al.  Fractional diffusion models of nonlocal transport , 2006 .

[67]  S. Masuzaki,et al.  Superdiffusion and multifractal statistics of edge plasma turbulence in fusion devices , 2006 .

[68]  Mesoscale transport properties induced by near critical resistive pressure-gradient-driven turbulence in toroidal geometry , 2006 .

[69]  O. E. Garcia,et al.  The application of passive tracers for investigating transport in plasma turbulence , 2006 .

[70]  M. Baiesi,et al.  Self-organized-criticality model consistent with statistical properties of edge turbulence in a fusion plasma. , 2005, Physical review letters.

[71]  J. Rasmussen,et al.  Turbulence spreading, anomalous transport, and pinch effect , 2005 .

[72]  M. Greenwald,et al.  Evidence for electromagnetic fluid drift turbulence controlling the edge plasma state in the Alcator C-Mod tokamak , 2005 .

[73]  S. Jachmich,et al.  On the properties of turbulence intermittency in the boundary of the TEXTOR tokamak , 2005 .

[74]  J. Juul Rasmussen,et al.  Up-gradient transport in a probabilistic transport model , 2005 .

[75]  B. Carreras,et al.  Probabilistic transport models for plasma transport in the presence of critical thresholds: Beyond the diffusive paradigma) , 2005 .

[76]  T. S. Hahm,et al.  Zonal flows in plasma—a review , 2005 .

[77]  Patrick H. Diamond,et al.  Dynamics of turbulence spreading in magnetically confined plasmas , 2005 .

[78]  B. Carreras,et al.  Fluid limit of nonintegrable continuous-time random walks in terms of fractional differential equations. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[79]  R. Dickman,et al.  Absorbing-state phase transitions with extremal dynamics. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  V. Lynch,et al.  Nondiffusive transport in plasma turbulence: a fractional diffusion approach. , 2004, Physical review letters.

[81]  K. Kawahata,et al.  Comparison of transient electron heat transport in LHD helical and JT-60U tokamak plasmas , 2005 .

[82]  J. Kinsey,et al.  Advances in comprehensive gyrokinetic simulations of transport in tokamaks , 2004 .

[83]  H. Roman,et al.  Statistical investigation of transport barrier effects produced by biasing in a nonfusion magnetoplasma , 2004 .

[84]  A. Manini,et al.  Profile stiffness and global confinement , 2004 .

[85]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[86]  Vickie E. Lynch,et al.  Fractional diffusion in plasma turbulence , 2004 .

[87]  B. Carreras,et al.  Uphill transport and the probabilistic transport model , 2004 .

[88]  T. Osborne,et al.  Characterization of peeling-ballooning stability limits on the pedestal , 2004 .

[89]  C. Bourdelle,et al.  Electron transport and the critical temperature gradient , 2004 .

[90]  C. Lechte,et al.  Study of edge turbulence in dimensionally similar laboratory plasmas , 2004 .

[91]  Raul Sanchez,et al.  Probabilistic finite-size transport models for fusion: Anomalous transport and scaling laws , 2004 .

[92]  Effect of poloidal sheared flow on the long-range correlation characters of edge plasma turbulent transport , 2004 .

[93]  T. K. March,et al.  Off-axis electron cyclotron heating and the sandpile paradigm for transport in tokamak plasmas , 2004 .

[94]  H. R. Hicks,et al.  Numerical methods for the solution of partial difierential equations of fractional order , 2003 .

[95]  P. Kaw,et al.  A continuum one-dimensional SOC model for thermal transport in tokamaks , 2003 .

[96]  H. R. Hicks,et al.  Modelling of ELM-like phenomena via mixed SOC-diffusive dynamics , 2003 .

[97]  Qing Yang,et al.  Aligned single crystal boron nanowires , 2003 .

[98]  M. Sugihara,et al.  Characteristics of type I ELM energy and particle losses in existing devices and their extrapolation to ITER , 2003 .

[99]  X. Garbet,et al.  Characterization of ion heat conduction in JET and ASDEX Upgrade plasmas with and without internal transport barriers , 2003 .

[100]  Amita Das,et al.  Continuum self-organized-criticality model of turbulent heat transport in tokamaks. , 2003, Physical review letters.

[101]  T. L. Rhodes,et al.  Structure function analysis of long-range correlations in plasma turbulence , 2003 .

[102]  J. Rasmussen,et al.  Turbulent flux and the diffusion of passive tracers in electrostatic turbulence , 2003 .

[103]  B Ph van Milligen,et al.  Quiet-time statistics of electrostatic turbulent fluxes from the JET tokamak and the W7-AS and TJ-II stellarators. , 2003, Physical review letters.

[104]  S. Benkadda,et al.  Confinement and bursty transport in a flux-driven convection model with sheared flows , 2003 .

[105]  M. Rosenbluth,et al.  Hysteresis and relaxation in bistable diffusive sandpile , 2003 .

[106]  Self-Organized Criticality Processes in HL-1M Tokamak Plasma , 2003 .

[107]  M. Rosenbluth,et al.  Sandpiles with bistable automata rules: towards a minimal model of pedestal formation and structure. , 2002, Physical review letters.

[108]  G. Zaslavsky Chaos, fractional kinetics, and anomalous transport , 2002 .

[109]  Fotios C. Harmantzis,et al.  Fractional Lévy motion and its application to network traffic modeling , 2002, Comput. Networks.

[110]  G. F. Matthews,et al.  Empirical similarity in the probability density function of turbulent transport in the edge plasma region in fusion plasmas , 2002 .

[111]  D. Newman,et al.  Transition in the dynamics of a diffusive running sandpile. , 2002, Physical review letters.

[112]  T. L. Rhodes,et al.  Investigation of rescaled range analysis, the Hurst exponent, and long-time correlations in plasma turbulence , 2002 .

[113]  A self-organized critical transport model based on critical-gradient fluctuation dynamics , 2002 .

[114]  R. Balescu,et al.  Electrostatic turbulence with finite parallel correlation length and radial diffusion , 2002 .

[115]  D E Newman,et al.  Waiting-time statistics of self-organized-criticality systems. , 2002, Physical review letters.

[116]  F. Imbeaux,et al.  Experimental studies of electron transport , 2001 .

[117]  D. R. Kulkarni,et al.  Evidence of Lévy stable process in tokamak edge turbulence , 2001, physics/0110051.

[118]  E. Doyle,et al.  Characterization of avalanche-like events in a confined plasma , 2001 .

[119]  Vickie E. Lynch,et al.  Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model , 2001 .

[120]  E. Doyle,et al.  Thermal diffusivities in DIII-D show evidence of critical gradients , 2001 .

[121]  V. Antoni,et al.  Transport processes in reversed-field-pinch plasmas: inconsistency with the self-organized-criticality paradigm. , 2001, Physical review letters.

[122]  S. Luckhardt,et al.  Experimental evidence of intermittent convection in the edge of magnetic confinement devices. , 2001, Physical review letters.

[123]  Self-Organized Criticality Properties of the Turbulence-Induced Particle Flux at the Plasma Edge of the HT-6M Tokamak , 2001 .

[124]  G Serianni,et al.  Search of self-organized criticality processes in magnetically confined plasmas: hints from the reversed field pinch configuration. , 2001, Physical review letters.

[125]  A Signature of Self-Organized Criticality in the HT-6M Edge Plasma Turbulence , 2001 .

[126]  Mixed SOC diffusive dynamics as a paradigm for transport in fusion devices , 2001 .

[127]  S C Chapman,et al.  Sandpile model with tokamaklike enhanced confinement phenomenology. , 2001, Physical review letters.

[128]  V. Antoni,et al.  Transport Processes in Reversed-Field-Pinch Plasmas , 2001 .

[129]  Vincenzo Carbone,et al.  Search of Self-Organized Criticality Processes in Magnetically Confined Plasmas , 2001 .

[130]  F. Jenko,et al.  Electron temperature gradient turbulence. , 2000, Physical review letters.

[131]  X. Garbet,et al.  Nondiffusive transport in tokamaks: three-dimensional structure of bursts and the role of zonal flows , 2000, Physical review letters.

[132]  R. Balescu Memory effects in plasma transport theory , 2000 .

[133]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[134]  Response to “Comment on ‘The Hurst exponent and long time correlation’ ” [Phys. Plasmas 7, 5267 (2000)] , 2000 .

[135]  Comment on “The Hurst exponent and long-time correlation” [Phys. Plasmas 7, 1181 (2000)] , 2000 .

[136]  E. de la Luna,et al.  Edge-localized-mode-like events in the TJ-II stellarator , 2000 .

[137]  V. Lynch,et al.  Intermittency of plasma edge fluctuation data: Multifractal analysis , 2000 .

[138]  G. Chiodini,et al.  Statistical characterization of fluctuation wave forms in the boundary region of fusion and nonfusion plasmas , 2000 .

[139]  P. Devynck,et al.  The Hurst exponent and long-time correlation , 2000 .

[140]  T. S. Hahm,et al.  Gyrokinetic simulations in general geometry and applications to collisional damping of zonal flows , 2000 .

[141]  Politzer Observation of avalanchelike phenomena in a magnetically confined plasma , 2000, Physical review letters.

[142]  M. A. Muñoz,et al.  Paths to self-organized criticality , 1999, cond-mat/9910454.

[143]  P. Terry,et al.  Suppression of turbulence and transport by sheared flow , 2000 .

[144]  Characterization of the frequency ranges of the plasma edge fluctuation spectra , 1999 .

[145]  R. Waltz,et al.  Flux driven turbulence in tokamaks , 1999 .

[146]  B. Carreras,et al.  Self-Similarity Properties of the Probability Distribution Function of Turbulence-Induced Particle Fluxes at the Plasma Edge , 1999 .

[147]  T. Huillet Fractional Lévy motions and related processes , 1999 .

[148]  A. F. Pacheco,et al.  Modified renormalization strategy for sandpile models. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[149]  C. Snyder,et al.  CRITICAL COMPARISON BETWEEN TIME- AND FREQUENCY-DOMAIN RELAXATION FUNCTIONS , 1999 .

[150]  David E. Newman,et al.  Empirical Similarity of Frequency Spectra of the Edge-Plasma Fluctuations in Toroidal Magnetic-Confinement Systems , 1999 .

[151]  B. A. Carreras,et al.  Experimental Evidence of Long-Range Correlations and Self-Similarity in Plasma Fluctuations , 1999 .

[152]  Guido Boffetta,et al.  Power Laws in Solar Flares: Self-Organized Criticality or Turbulence? , 1999, chao-dyn/9904043.

[153]  T. L. Rhodes,et al.  Experimental evidence for self-organized criticality in tokamak plasma turbulence , 1999 .

[154]  Long-range time dependence in the cross-correlation function , 1999 .

[155]  K. Tritz,et al.  The beam emission spectroscopy diagnostic on the DIII-D tokamak , 1999 .

[156]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[157]  Y. Sarazin,et al.  Intermittent particle transport in two-dimensional edge turbulence , 1998 .

[158]  David E. Newman,et al.  Self-similarity of the plasma edge fluctuations , 1998 .

[159]  Xavier Garbet,et al.  Heat flux driven ion turbulence , 1998 .

[160]  R. L. Miller,et al.  Magnetohydrodynamic stability of tokamak edge plasmas , 1998 .

[161]  Benjamin A. Carreras,et al.  Long-range time correlations in plasma edge turbulence , 1998 .

[162]  S. Zoletnik,et al.  OPERATIONAL RANGE AND TRANSPORT BARRIER OF THE H-MODE IN THE STELLARATOR W7-AS , 1998 .

[163]  J. Snipes,et al.  Transport phenomena in Alcator C-Mod H-modes , 1998 .

[164]  Henrik Jeldtoft Jensen,et al.  Self-Organized Criticality , 1998 .

[165]  P. Helander,et al.  Appearance and nonappearance of self-organized criticality in sandpiles , 1998 .

[166]  U. Stroth,et al.  REVIEW ARTICLE: A comparative study of transport in stellarators and tokamaks , 1998 .

[167]  Per Helander,et al.  REVIEW ARTICLE: Sandpiles, silos and tokamak phenomenology: a brief review , 1997 .

[168]  Alexander I. Saichev,et al.  Fractional kinetic equations: solutions and applications. , 1997, Chaos.

[169]  D. Lemons,et al.  Paul Langevin’s 1908 paper “On the Theory of Brownian Motion” [“Sur la théorie du mouvement brownien,” C. R. Acad. Sci. (Paris) 146, 530–533 (1908)] , 1997 .

[170]  Y. Sarazin,et al.  Self-organized criticality in particle transport governed by ionization , 1997 .

[171]  K. Knight Stable Non-Gaussian Random Processes Gennady Samorodnitsky and Murad S. Taqqu Chapman and Hall, 1994 , 1997, Econometric Theory.

[172]  F. Mainardi The fundamental solutions for the fractional diffusion-wave equation , 1996 .

[173]  Vickie E. Lynch,et al.  A model realization of self‐organized criticality for plasma confinement , 1996 .

[174]  R. Waltz,et al.  Action at distance and Bohm scaling of turbulence in tokamaks , 1996 .

[175]  P. Diamond,et al.  The dynamics of marginality and self-organized criticality as a paradigm for turbulent transport , 1996 .

[176]  W. Horton,et al.  Theory of self‐organized critical transport in tokamak plasmas , 1996 .

[177]  Berk,et al.  Nonlinear dynamics of a driven mode near marginal stability. , 1996, Physical review letters.

[178]  M. Pedrosa,et al.  Edge Plasma Turbulence Diagnosis by Langmuir Probes , 1996 .

[179]  Lao,et al.  Enhanced confinement and stability in DIII-D discharges with reversed magnetic shear. , 1995, Physical review letters.

[180]  The fixed-scale transformation approach to fractal growth , 1995 .

[181]  Manickam,et al.  Improved confinement with reversed magnetic shear in TFTR. , 1995, Physical review letters.

[182]  William Dorland,et al.  Quantitative predictions of tokamak energy confinement from first‐principles simulations with kinetic effects , 1995 .

[183]  Balescu Anomalous transport in turbulent plasmas and continuous time random walks. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[184]  Lu Avalanches in continuum driven dissipative systems. , 1995, Physical review letters.

[185]  P. Diamond,et al.  On the dynamics of turbulent transport near marginal stability , 1995 .

[186]  Steve C. Chiu,et al.  Nondimensional transport scaling in DIII‐D: Bohm versus gyro‐Bohm resolved , 1995 .

[187]  A. Wootton,et al.  An experimental counter‐example to the local transport paradigm , 1995 .

[188]  C. Peng,et al.  Mosaic organization of DNA nucleotides. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[189]  P. Diamond,et al.  DRIFT WAVE PROPAGATION AS A SOURCE OF PLASMA EDGE TURBULENCE , 1994 .

[190]  T. C. Luce,et al.  Inward transport of energy during off-axis heating on the DIII-D tokamak , 1994 .

[191]  E. Sindoni,et al.  Plasma-wave interaction in a toroidal steady-state device , 1993 .

[192]  U. Stroth,et al.  Transport in toroidal devices-the experimentalist's view , 1992 .

[193]  Paul W. Terry,et al.  Theory of shear flow effects on long‐wavelength drift wave turbulence , 1992 .

[194]  Díaz-Guilera Noise and dynamics of self-organized critical phenomena. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[195]  Hwa,et al.  Avalanches, hydrodynamics, and discharge events in models of sandpiles. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[196]  Berk,et al.  Scenarios for the nonlinear evolution of alpha-particle-induced Alfvén wave instability. , 1992, Physical review letters.

[197]  G. Becker Electron Temperature Profile Invariance in OH-, L- and H-Mode Plasmas and Consequences for the Anomalous Transport , 1992 .

[198]  C. Meneveau,et al.  The multifractal nature of turbulent energy dissipation , 1991, Journal of Fluid Mechanics.

[199]  J. Weiland,et al.  Simulation of toroidal drift mode turbulence driven by temperature gradients and electron trapping , 1990 .

[200]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[201]  Patrick H. Diamond,et al.  Theory of resistive pressure-gradient-driven turbulence , 1987 .

[202]  H. R. Hicks,et al.  3D nonlinear MHD calculations using implicit and explicit time integration schemes , 1986 .

[203]  B. A. Carreras,et al.  Numerical calculations using the full MHD equations in toroidal geometry , 1986 .

[204]  Elliott W. Montroll,et al.  Random walks on lattices. IV. Continuous-time walks and influence of absorbing boundaries , 1973 .

[205]  J. R. Wallis,et al.  Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence , 1969 .

[206]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[207]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .