The Central Auditory System of Reptiles and Birds

The central auditory systems of both birds and reptiles (jointly known as sauropsids) are organized along a common plan. The similarities among the sauropsids are presumably due to the conserved nature of the auditory sense and to the close phylogenetic relationships within the group. The common organization of the auditory system has allowed us to organize this chapter by auditory nucleus from hindbrain to forebrain. The embryology, anatomy, and physiology of the auditory nuclei of the turtles, snakes and lizards, crocodiles, and birds will be described, with attention paid to both conserved and derived features. A more extensive list of the older literature may be found in Carr (1992).

[1]  E. Rubel,et al.  Ultrastructural observations on regenerating hair cells in the chick basilar papilla , 1990, Hearing Research.

[2]  M. Szpir,et al.  Central projections of cochlear nerve fibers in the alligator lizard , 1990, The Journal of comparative neurology.

[3]  F. Fischer Quantitative analysis of the innervation of the chicken basilar papilla , 1992, Hearing Research.

[4]  L. Puelles,et al.  New subdivision schema for the avian torus semicircularis: Neurochemical maps in the chick , 1994, The Journal of comparative neurology.

[5]  Representation of acoustic signals in the eighth nerve of the tokay gecko II. Masking of pure tones with noise , 1996, Hearing Research.

[6]  G. Manley,et al.  Cochlear and lagenar ganglia of the chicken , 1994, Journal of morphology.

[7]  J. Landolt,et al.  Efferent vestibular neurons: A study employing retrograde tracer methods in the pigeon (Columba livia) , 1981, The Journal of comparative neurology.

[8]  U. Häusler Topography of the Thalamotelencephalic Projections in the Auditory System of a Songbird (Sturnus Vulgaris) , 1988 .

[9]  E. Rubel,et al.  Organization and development of brain stem auditory nuclei of the chicken: Dendritic gradients in nucleus laminaris , 1979, The Journal of comparative neurology.

[10]  W. Warr Organization of Olivocochlear Efferent Systems in Mammals , 1992 .

[11]  E. Wever,et al.  The Reptile Ear , 2019 .

[12]  A Moiseff,et al.  Time and intensity cues are processed independently in the auditory system of the owl , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  R. L. Boord,et al.  Projection of the cochlear and lagenar nerves on the cochlear nuclei of the pigeon , 1963, The Journal of comparative neurology.

[14]  C. Müller γ-Aminobutyric acid immunoreactivity in brainstem auditory nuclei of the chicken , 1987, Neuroscience Letters.

[15]  M. Konishi,et al.  Tonotopic organization in the avian telencephalon , 1976, Brain Research.

[16]  A. S. King,et al.  Form and Function in Birds , 1981 .

[17]  R. Nodar,et al.  Efferent Auditory System: Structure and Function , 1997 .

[18]  G. Striedter The telencephalon of tetrapods in evolution. , 1997, Brain, behavior and evolution.

[19]  H. Karten,et al.  The Origins of Neocortex: Connections and Lamination as Distinct Events in Evolution , 1989, Journal of Cognitive Neuroscience.

[20]  R. Klinke,et al.  Synchronized responses of primary auditory fibre-populations in Caiman crocodilus (L.) to single tones and clicks , 1986, Hearing Research.

[21]  M. Konishi,et al.  Representation of sound localization cues in the auditory thalamus of the barn owl. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[22]  H. Ku¨nzle Projections from the cochlear nuclear complex to rhombencephalic auditory centers and torus semicircularis in the turtle , 1986, Brain Research.

[23]  R. Northcutt The forebrain of gnathostomes: in search of a morphotype. , 1995, Brain, behavior and evolution.

[24]  I. Raman,et al.  The kinetics of the response to glutamate and kainate in neurons of the avian cochlear nucleus , 1992, Neuron.

[25]  J. Rogers Two calcium-binding proteins mark many chick sensory neurons , 1989, Neuroscience.

[26]  S. Hashimoto,et al.  Computer-aided three-dimensional reconstruction of the inner hair cells and their nerve endings in the guinea pig cochlea. , 1990, Acta oto-laryngologica.

[27]  R. Rübsamen,et al.  GABAergic terminals in nucleus maznocellularis and laminaris originate from the superior olivary nucleus , 1994, The Journal of comparative neurology.

[28]  F. Nottebohm,et al.  Projections of a telencephalic auditory nucleus– field L–in the canary , 1979, The Journal of comparative neurology.

[29]  C. Carr,et al.  Central projections of auditory nerve fibers in the barn owl , 1991, The Journal of comparative neurology.

[30]  M. Pritz,et al.  A second auditory area in the non-cortical telencephalon of a reptile , 1992, Brain Research.

[31]  Malcolm R. Miller,et al.  The Reptilian Cochlear Duct , 1980 .

[32]  C. Carr,et al.  Chick cochlear efferent neurons are not immunoreactive for calcitonin gene-related peptide , 1996, Hearing Research.

[33]  Belekhova Mg,et al.  Connections of the mesencephalic, thalamic and telencephalic auditory centers in turtles. Some structural bases for audiosomatic interrelations. , 1985 .

[34]  F. Nottebohm,et al.  Bilateral organization of the vocal control pathway in the budgerigar, Melopsittacus undulatus , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  Wilczynski Walter,et al.  Central Neural Systems Subserving a Homoplasous Periphery , 1984 .

[36]  A. Popper,et al.  The Evolutionary biology of hearing , 1992 .

[37]  E I Knudsen,et al.  A neural map of auditory space in the owl. , 1978, Science.

[38]  R. L. Boord The efferent cochlear bundle in the caiman and pigeon , 1961 .

[39]  C. Carr,et al.  Enkephalin-like immunoreactivity in the chick brainstem: possible relation to the cochlear efferent system , 1995, Hearing Research.

[40]  J. Chandler Light and electron microscopic studies of the basilar papilla in the duck, Anas platyrhynchos. I. The hatchling , 1984, The Journal of comparative neurology.

[41]  E. Rubel,et al.  Organization and development of brain stem auditory nuclei of the chicken: Tonotopic organization of N. magnocellularis and N. laminaris , 1975, The Journal of comparative neurology.

[42]  H. Karten,et al.  A stereotaxic atlas of the brain of the pigeon (Columba livia) , 1967 .

[43]  Ivan P. Los,et al.  Coexistence of calcitonin gene-related peptide and choline acetyltransferase in EEL efferent neurons , 1994, Hearing Research.

[44]  S. Brauth,et al.  Auditory Pathways in the Budgerigar , 1987 .

[45]  H. Wagner,et al.  Sound-localization deficits induced by lesions in the barn owl's auditory space map [published erratum appears in J Neurosci 1993 Apr;13(4):following table of contents] , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  Dr. Hendrik Jan ten Donkelaar,et al.  The Brain Stem in a Lizard, Varanus exanthematicus , 1987, Advances in Anatomy Embryology and Cell Biology.

[47]  P. Leake Central projections of the statoacoustic nerve in Caiman crocodilus. , 1974, Brain, behavior and evolution.

[48]  S. Brauth,et al.  Auditory projections to the anterior telencephalon in the budgerigar (Melopsittacus undulatus). , 1993, Brain, behavior and evolution.

[49]  P. Ulinski,et al.  Organization of thalamic afferents to anterior dorsal ventricular ridge in turtles. I. Projections of thalamic nuclei , 1981, The Journal of comparative neurology.

[50]  C. Köppl,et al.  Auditory nerve terminals in the cochlear nucleus magnocellularis: Differences between low and high frequencies , 1994, The Journal of comparative neurology.

[51]  P. Narins,et al.  The phase response of primary auditory afferents in a songbird (Sturnus vulgaris L.) , 1988, Hearing Research.

[52]  Georg M. Klump,et al.  Sound Localization in Birds , 2000 .

[53]  C E Carr,et al.  Localization of AMPA‐selective glutamate receptors in the auditory brainstem of the barn owl , 1997, The Journal of comparative neurology.

[54]  S. Durand,et al.  Vocal control pathways through the anterior forebrain of a parrot (Melopsittacus undulatus) , 1997, The Journal of comparative neurology.

[55]  Fernando Nottebohm,et al.  Organization of the zebra finch song control system: I. Representation of syringeal muscles in the hypoglossal nucleus , 1988, The Journal of comparative neurology.

[56]  M. Konishi,et al.  A circuit for detection of interaural time differences in the brain stem of the barn owl , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  E. Mroz,et al.  A possible neurotransmitter role for CGRP in a hair-cell sensory organ , 1987, Brain Research.

[58]  M. Biederman-Thorson Auditory responses of units in the ovoid nucleus and cerebrum (field L) of the ring dove. , 1970, Brain research.

[59]  J. Strutz The origin of efferent fibers to the inner ear in a turtle (Terrapene ornata). A horseradish peroxidase study , 1982, Brain Research.

[60]  M. Konishi,et al.  Selectivity for interaural time difference in the owl's midbrain , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  G. Striedter,et al.  The vocal control pathways in budgerigars differ from those in songbirds , 1994, The Journal of comparative neurology.

[62]  R. Klinke,et al.  The course and morphology of efferent nerve fibres in the papilla basilaris of the pigeon (Columba livia) , 1994, Hearing Research.

[63]  A. Meyer,et al.  Complete mitochondrial genome suggests diapsid affinities of turtles. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[64]  M. Konishi,et al.  Birdsong: from behavior to neuron. , 1985, Annual review of neuroscience.

[65]  A. Reyes,et al.  Membrane properties underlying the firing of neurons in the avian cochlear nucleus , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  J. Strutz The origin of centrifugal fibers to the inner ear in Caiman crocodilus. A horseradish peroxidase study , 1981, Neuroscience Letters.

[67]  F. Aboitiz,et al.  Does bigger mean better? Evolutionary determinants of brain size and structure. , 1996, Brain, behavior and evolution.

[68]  H. Wagner,et al.  Representation of interaural time difference in the central nucleus of the barn owl's inferior colliculus , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  Bernd Fritzsch Efferent neurons to the labyrinth of Salamandra salamandra as revealed by retrograde transport of horseradish peroxidase , 1981, Neuroscience Letters.

[70]  A. Doupe Song- and Order-Selective Neurons in the Songbird Anterior Forebrain and their Emergence during Vocal Development , 1997, The Journal of Neuroscience.

[71]  Catherine A. Smith,et al.  The structure and innervation of the pigeon's basilar papilla. , 1971, Journal of ultrastructure research.

[72]  E. Knudsen Subdivisions of the inferior colliculus in the barn owl (Tyto alba) , 1983, The Journal of comparative neurology.

[73]  R. Adolphs Acetylcholinesterase staining differentiates functionally distinct auditory pathways in the barn owl , 1993, The Journal of comparative neurology.

[74]  J. Strutz,et al.  Origin of efferent fibers of the vestibular apparatus in goldfish. A horseradish peroxidase study , 1980, Neuroscience Letters.

[75]  J. Wild,et al.  Reciprocal connections between primary and secondary auditory pathways in the telencephalon of the budgerigar (Melopsittacus undulatus) , 1997, Brain Research.

[76]  S. Jhaveri,et al.  Neuronal architecture in nucleus magnocellularis of the chicken auditory system with observations on nucleus laminaris: A light and electron microscope study , 1982, Neuroscience.

[77]  R. H. Browner,et al.  The nucleus magnocellularis in the red-eared turtle, Chrysemys scripta elegans: Eighth nerve endings and neuronal types , 1988, Hearing Research.

[78]  R. G. Turner,et al.  Tuning of single fibers in the cochlear nerve of the alligator lizard: Relation to receptor morphology , 1976, Brain Research.

[79]  日本音響学会,et al.  Comparative Studies of Hearing in Vertebrates , 1980, Proceedings in Life Sciences.

[80]  M. Eybalin,et al.  Neurotransmitters and neuromodulators of the mammalian cochlea. , 1993, Physiological reviews.

[81]  M. Szpir,et al.  Neuronal organization of the cochlear nuclei in alligator lizards: A light and electron microscopic investigation , 1995, The Journal of comparative neurology.

[82]  E I Knudsen,et al.  Binaural tuning of auditory units in the forebrain archistriatal gaze fields of the barn owl: local organization but no space map , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[83]  E. Rubel,et al.  GABAergic neurons in brainstem auditory nuclei of the chick: Distribution, morphology, and connectivity , 1989, The Journal of comparative neurology.

[84]  Richard P. Bobbin,et al.  Neurobiology of hearing : the cochlea , 1986 .

[85]  J. Tepper,et al.  The shell region of the nucleus ovoidalis: A subdivision of the avian auditory thalamus , 1992, The Journal of comparative neurology.

[86]  A. Parent Striatal afferent connections in the turtle (Chrysemys picta) as revealed by retrograde axonal transport of horseradish peroxidase , 1976, Brain Research.

[87]  Eric I. Knudsen,et al.  Representation of interaural level difference in the VLVp, the first site of binaural comparison in the barn owl's auditory system , 1994, Hearing Research.

[88]  E. Rubel,et al.  Development of GABA immunoreactivity in brainstem auditory nuclei of the chick: Ontogeny of gradients in terminal staining , 1989, The Journal of comparative neurology.

[89]  李幼升,et al.  Ph , 1989 .

[90]  T. Hotta Unit responses from the nucleus angularis in the pigeon's medulla. , 1971, Comparative biochemistry and physiology. A, Comparative physiology.

[91]  H. Karten,et al.  The ascending auditory pathway in the pigeon (Columba livia). II. Telencephalic projections of the nucleus ovoidalis thalami. , 1968, Brain research.

[92]  C E Carr,et al.  Low‐frequency pathway in the barn owl's auditory brainstem , 1997, The Journal of comparative neurology.

[93]  L. Puelles,et al.  Morphological Fate of Rhombomeres in Quail/Chick Chimeras: A Segmental Analysis of Hindbrain Nuclei , 1995, The European journal of neuroscience.

[94]  E I Knudsen,et al.  Receptive fields of auditory neurons in the owl. , 1977, Science.

[95]  C. Köppl,et al.  Frequency tuning and spontaneous activity in the auditory nerve and cochlear nucleus magnocellularis of the barn owl Tyto alba. , 1997, Journal of neurophysiology.

[96]  C. Carr,et al.  Organization of the nucleus magnocellularis and the nucleus laminaris in the barn owl: Encoding and measuring interaural time differences , 1993, The Journal of comparative neurology.

[97]  R. L. Boord,et al.  Ascending projections of the primary cochlear nuclei and nucleus laminaris in the pigeon , 1968, The Journal of comparative neurology.

[98]  M. Konishi,et al.  Binaural characteristics of units in the owl's brainstem auditory pathway: precursors of restricted spatial receptive fields , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[99]  D. Jacobowitz,et al.  Calretinin expression in the chick brainstem auditory nuclei develops and is maintained independently of cochlear nerve input , 1997, The Journal of comparative neurology.

[100]  E I Knudsen,et al.  Auditory tuning for spatial cues in the barn owl basal ganglia. , 1994, Journal of neurophysiology.

[101]  R. H. Browner,et al.  The cytoarchitecture of the torus semicircularis in the red‐eared turtle , 1981, Journal of morphology.

[102]  D. H. Johnson,et al.  The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. , 1980, The Journal of the Acoustical Society of America.

[103]  R. L. Hyson,et al.  Coincidence detection by binaural neurons in the chick brain stem. , 1993, Journal of neurophysiology.

[104]  D. Schwarz,et al.  A survey of the auditory midbrain, thalamus and forebrain in the chicken (Gallus domesticus) with cytochrome oxidase histochemistry. , 1993, The Journal of otolaryngology.

[105]  Phase locking to tones in avian auditory‐nerve fibers , 1977 .

[106]  Masakazu Konishi,et al.  Comparative Physiology of Sound Localization in Four Species of Owls (Part 1 of 2) , 1990 .

[107]  R. Fay,et al.  Hearing in Vertebrates: A Psychophysics Databook , 1988 .

[108]  P F Knudsen,et al.  Parallel pathways mediating both sound localization and gaze control in the forebrain and midbrain of the barn owl , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[109]  E. Rubel,et al.  Embryogenesis of arborization pattern and topography of individual axons in N. Laminaris of the chicken brain stem , 1986, The Journal of comparative neurology.

[110]  T T Takahashi,et al.  Role of commissural projections in the representation of bilateral auditory space in the barn owl's inferior colliculus , 1989, The Journal of comparative neurology.

[111]  D. Oertel,et al.  Encoding of Timing in the Brain Stem Auditory Nuclei of Vertebrates , 1997, Neuron.

[112]  R. Fettiplace,et al.  The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle , 1980, The Journal of physiology.

[113]  W. Smeets,et al.  Sensorimotor integration in the brain of reptiles. , 1994, European journal of morphology.

[114]  M. Konishi,et al.  Neural map of interaural phase difference in the owl's brainstem. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[115]  R. Dooling,et al.  Auditory Pathways in the Budgerigar (Part 1 of 2) , 1987 .

[116]  M. Konishi,et al.  Tolerance to Sound Intensity of Binaural Coincidence Detection in the Nucleus Laminaris of the Owl , 1996, The Journal of Neuroscience.

[117]  Masakazu Konishi,et al.  Pattern generation in birdsong , 1994, Current Opinion in Neurobiology.

[118]  Justus Liebig,et al.  Progress in Sensory Physiology , 1981, Progress in Sensory Physiology.

[119]  W E Sullivan Classification of response patterns in cochlear nucleus of barn owl: correlation with functional response properties. , 1985, Journal of neurophysiology.

[120]  Catherine E. Carr,et al.  Evolution of the Central Auditory System in Reptiles and Birds , 1992 .

[121]  P. Delwaide,et al.  Neural Inhibition in a Bird : Effect of Strychnine and Picrotoxin , 1963, Nature.

[122]  J. L. Brown An exploration study of vocalization areas in the brain of the redwinged blackbird (Agelaius phoeniceus). , 1971, Behaviour.

[123]  J. Strutz,et al.  Acoustic and vestibular efferent neurons in the chicken (Gallus domesticus). A horseradish peroxidase study. , 1982, Acta oto-laryngologica.

[124]  A. Arnold,et al.  Afferent neurons in the hypoglossal nerve of the zebra finch (Poephila guttata): Localization with horseradish peroxidase , 1982, The Journal of comparative neurology.

[125]  H. Karten,et al.  Connections of the auditory forebrain in the pigeon (columba livia) , 1993, The Journal of comparative neurology.

[126]  Richard R. Fay,et al.  Comparative Hearing: Fish and Amphibians , 1999, Springer Handbook of Auditory Research.

[127]  C. Carr,et al.  A Morphological Study of the Cochlear Nuclei of the Pigeon (Columba livia) , 1999, Brain, Behavior and Evolution.

[128]  S. Brauth Investigation of central auditory nuclei in the budgerigar with cytochrome oxidase histochemistry , 1990, Brain Research.

[129]  E I Knudsen,et al.  Neural maps of head movement vector and speed in the optic tectum of the barn owl. , 1990, Journal of neurophysiology.

[130]  M. Gurney,et al.  Hormonal control of cell form and number in the zebra finch song system , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[131]  R. Norberg Skull asymmetry, ear structure and function, and auditory localization in Tengmalm’s owl, Aegolius funereus (Linné) , 1978 .

[132]  J. Wild Nuclei of the lateral lemniscus project directly to the thalamic auditory nuclei in the pigeon , 1987, Brain Research.

[133]  C. Smith,et al.  Structure of the chicken's inner ear: SEM and TEM study. , 1978, The American journal of anatomy.

[134]  M. Konishi,et al.  Projections of nucleus angularis and nucleus laminaris to the lateral lemniscal nuclear complex of the barn owl , 1988, The Journal of comparative neurology.

[135]  Geoffrey A. Manley,et al.  Functional Consequences of Morphological Trends in the Evolution of Lizard Hearing Organs , 1992 .

[136]  T T Takahashi,et al.  Projections of the cochlear nuclei and nucleus laminaris to the inferior colliculus of the barn owl , 1988, The Journal of comparative neurology.

[137]  D. Schwarz,et al.  Connections of the superior olive in the chicken. , 1995, The Journal of otolaryngology.

[138]  Malcolm R. Miller,et al.  The cochlear nuclei of lizards , 1975, The Journal of comparative neurology.

[139]  M. Konishi,et al.  Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[140]  W. Firbas,et al.  The efferent innervation of the avian cochlea , 1983, Hearing Research.

[141]  I. Fujita,et al.  Distribution of GABAergic neurons and terminals in the auditory system of the barn owl , 1989, The Journal of comparative neurology.

[142]  J A Mazer,et al.  How the owl resolves auditory coding ambiguity. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[143]  E. Rubel,et al.  Physiologic Status of Regenerated Hair Cells in the Avian Inner Ear following Aminoglycoside Ototoxicity , 1990, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[144]  F. Fischer Quantitative TEM analysis of the barn owl basilar papilla , 1994, Hearing Research.

[145]  W. Smeets,et al.  Central control of melanotrope cells of Xenopus laevis. , 1994, European journal of morphology.

[146]  Gert Stange,et al.  Temporal synchronization in the primary auditory response in the pigeon , 1989, Hearing Research.

[147]  C. Carr,et al.  Choline acetyltransferase‐immunoreactive cochlear efferent neurons in the chick auditory brainstem , 1994, The Journal of comparative neurology.

[148]  Malcolm R. Miller,et al.  The cochlear nuclei of some turtles , 1979, The Journal of comparative neurology.

[149]  O. Rieppel,et al.  Turtles as diapsid reptiles , 1996, Nature.

[150]  M. Pritz Ascending connections of a thalamic auditory area in a crocodile, Caiman crocodilus , 1974, The Journal of comparative neurology.

[151]  L. C. Katz,et al.  Auditory responses in the zebra finch's motor system for song , 1981, Brain Research.

[152]  Gerald M. Edelman,et al.  Auditory function : neurobiological bases of hearing , 1988 .

[153]  D. Schwarz,et al.  Cochlear efferent neurons projecting to both ears in the chicken, Gallus domesticus , 1992, Hearing Research.

[154]  E. Rubel,et al.  Morphological correlates of functional recovery in the chicken inner ear after gentamycin treatment , 1993, The Journal of comparative neurology.

[155]  G. E. Vates,et al.  Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches (Taenopygia guttata) , 1996, The Journal of comparative neurology.

[156]  G. Manley,et al.  The basilar papilla of the barn owl Tyto alba: A quantitative morphological SEM analysis , 1988, Hearing Research.

[157]  R. Tomlinson,et al.  Avian efferent vestibular neurons identified by axonal tranpoort of [3H]adenosine and horseradish peroxidase , 1978, Brain Research.

[158]  M. Konishi,et al.  Calcium binding protein-like immunoreactivity labels the terminal field of nucleus laminaris of the barn owl , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[159]  W. C. Hall,et al.  Thalamotelencephalic projections in the turtle (Pseudemys scripta) , 1970, The Journal of comparative neurology.

[160]  D. Cotanche,et al.  Regeneration of Cochlear Efferent Nerve Terminals after Gentamycin Damage , 1998, The Journal of Neuroscience.

[161]  P F Knudsen,et al.  Space‐Mapped auditory projections from the inferior colliculus to the optic tectum in the barn owl (Tyto alba) , 1983, The Journal of comparative neurology.

[162]  M Konishi,et al.  A neural map of interaural intensity differences in the brain stem of the barn owl , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[163]  D. Margoliash Acoustic parameters underlying the responses of song-specific neurons in the white-crowned sparrow , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[164]  A. Arnold,et al.  Forebrain lesions disrupt development but not maintenance of song in passerine birds. , 1984, Science.

[165]  H. Karten,et al.  Homology and evolutionary origins of the 'neocortex'. , 1991, Brain, behavior and evolution.

[166]  Laurence O Trussell,et al.  Cellular mechanisms for preservation of timing in central auditory pathways , 1997, Current Opinion in Neurobiology.

[167]  E. Rubel,et al.  Organization and development of brain stem auditory nuclei of the chicken: Organization of projections from N. magnocellularis to N. laminaris , 1975, The Journal of comparative neurology.

[168]  J. Nadol Synaptic morphology of inner and outer hair cells of the human organ of Corti. , 1990, Journal of electron microscopy technique.

[169]  D. Margoliash,et al.  Cytoarchitectonic organization and morphology of cells of the field L complex in male zebra finches (taenopygia guttata) , 1992, The Journal of comparative neurology.

[170]  E. Rubel,et al.  Frequency-specific projections of individual neurons in chick brainstem auditory nuclei , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[171]  C. A. Mccormick,et al.  Anatomy of the Central Auditory Pathways of Fish and Amphibians , 1999 .

[172]  H. Karten,et al.  The organization of the ascending auditory pathway in the pigeon (Columba livia). I. Diencephalic projections of the inferior colliculus (nucleus mesencephali lateralis, pars dorsalis). , 1967, Brain research.

[173]  Larry Michael Leibler Monaural and binaural pathways in the ascending auditory system of the pigeon , 1976 .

[174]  E. Knudsen,et al.  Horizontal and vertical components of head movement are controlled by distinct neural circuits in the barn owl , 1990, Nature.

[175]  W. C. Hall,et al.  The organization of central auditory pathways in a reptile, Iguana iguana , 1978, The Journal of comparative neurology.

[176]  E I Knudsen,et al.  Site of auditory plasticity in the brain stem (VLVp) of the owl revealed by early monaural occlusion. , 1994, Journal of neurophysiology.

[177]  E I Knudsen,et al.  Neural maps of interaural time and intensity differences in the optic tectum of the barn owl , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[178]  M. C. Whitehead,et al.  Dual populations of efferent and afferent cochlear axons in the chicken , 1981, Neuroscience.

[179]  E. Overholt,et al.  A circuit for coding interaural time differences in the chick brainstem , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[180]  J. Saunders,et al.  The structural and functional aspects of hair cell regeneration in the chick as a result of exposure to intense sound , 1992, Experimental Neurology.

[181]  Barry L. Roberts,et al.  The Efferent Innervation of the Ear: Variations on an Enigma , 1992 .

[182]  R. H. Browner,et al.  The torus semicircularis in a gekkonid lizard , 1981, Journal of morphology.

[183]  G. Manley Activity patterns of neurons in the peripheral auditory system of some reptiles. , 1974, Brain, behavior and evolution.

[184]  M. C. Kennedy Vocalization elicited in a lizard by electrical stimulation of the midbrain , 1975, Brain Research.

[185]  M. C. Kennedy Auditory multiple-unit activity in the midbrain of the Tokay gecko (Gekko gecko, L.). , 1974, Brain, behavior and evolution.

[186]  Y. Raphael,et al.  Re-innervation patterns of chick auditory sensory epithelium after acoustic overstimulation , 1996, Hearing Research.

[187]  I. Raman,et al.  Pathway-specific variants of AMPA receptors and their contribution to neuronal signaling , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[188]  P. Maclean,et al.  Behavior and neurology of lizards , 1979 .

[189]  Masakazu Konishi Centrally synthesized maps of sensory space , 1986, Trends in Neurosciences.

[190]  L A JEFFRESS,et al.  A place theory of sound localization. , 1948, Journal of comparative and physiological psychology.

[191]  G A Manley,et al.  Physiology of single putative cochlear efferents in the chicken. , 1994, Journal of neurophysiology.

[192]  H. Scheich,et al.  Effects of unilateral and bilateral cochlea removal on 2‐deoxyglucose patterns in the chick auditory system , 1986, The Journal of comparative neurology.

[193]  Geoffrey A. Manley,et al.  A Review of the Auditory Physiology of the Reptiles , 1981 .

[194]  A. Butler,et al.  Telencephalic connections in lizards. II. Projections to anterior dorsal ventricular ridge , 1984, The Journal of comparative neurology.

[195]  G. Langner,et al.  Infrasound responses in the midbrain of the guinea fowl , 1984, Neuroscience Letters.

[196]  Josef Syka,et al.  Auditory Pathway: Structure and Function , 1988 .

[197]  Malcolm R. Miller,et al.  Auditory hair cell innervational patterns in lizards , 1988, The Journal of comparative neurology.

[198]  M Konishi,et al.  The owl's cochlear nuclei process different sound localization cues. , 1985, The Journal of the Acoustical Society of America.

[199]  L. Trussell,et al.  A characterization of excitatory postsynaptic potentials in the avian nucleus magnocellularis. , 1994, Journal of neurophysiology.

[200]  Richard R. Fay,et al.  The Mammalian Auditory Pathway: Neuroanatomy , 1992, Springer Handbook of Auditory Research.

[201]  A. Lohman,et al.  Primary projections and efferent cells of the VIIIth cranial nerve in the monitor lizard, Varanus exanthematicus , 1988, The Journal of comparative neurology.

[202]  Robert R. Capranica,et al.  Representation of acoustic signals in the eighth nerve of the Tokay gecko: I. Pure tones , 1994, Hearing Research.

[203]  Catherine E. Carr,et al.  Evolution of Time Coding Systems , 1999, Neural Computation.

[204]  R. A. Code Efferent neurons to the macula lagena in the embryonic chick , 1995, Hearing Research.

[205]  H. Zeigler,et al.  Anatomical identification of an auditory pathway from a nucleus of the lateral lemniscal system to the frontal telencephalon (nucleus basalis) of the pigeon , 1986, Brain Research.

[206]  T. Parks,et al.  Origin of ascending auditory projections to the nucleus mesencephalicus lateralis pars dorsalis in the chicken , 1986, Brain Research.

[207]  G. Striedter,et al.  The “Neostriatum” Develops as Part of the Lateral Pallium in Birds , 1998, The Journal of Neuroscience.