Spatial Atomic Layer Deposition of Aluminum Oxide as a Passivating Hole Contact for Silicon Solar Cells

Herein, tunneling aluminum oxide (Al2O3) passivation layers are demonstrated to be a candidate for hole collecting, passivating contacts when coupled with a boron‐doped surface. These very thin Al2O3 films (1.5–3 nm) are deposited using spatial atomic layer deposition (ALD) on boron diffused (110–115 Ω □−1) hydrophilic surfaces operating as metal–insulator–semiconductor (MIS) contacts. The emitter saturation current density values of ≈57 fA cm−2 are achieved for the Al2O3 film thicknesses of 2 nm before metallization. At this same thickness, the contact resistivity values of 33 mΩ cm2 are obtained after metallization. Most importantly, the boron diffusion, wet chemical surface preparation, and spatial ALD of Al2O3 used to create these MIS structures are all performed with industrially relevant equipment on Cz wafers.

[1]  P. Banerjee,et al.  Improving the Passivation of Molybdenum Oxide Hole‐Selective Contacts with 1 nm Hydrogenated Aluminum Oxide Films for Silicon Solar Cells , 2020, physica status solidi (a).

[2]  Benjamin E. Davis,et al.  Aluminum Oxide Passivating Tunneling Interlayers for Molybdenum Oxide Hole-Selective Contacts , 2020, IEEE Journal of Photovoltaics.

[3]  Z. Holman,et al.  Passivation, conductivity, and selectivity in solar cell contacts: Concepts and simulations based on a unified partial-resistances framework , 2019, Journal of Applied Physics.

[4]  Thomas G. Allen,et al.  Passivating contacts for crystalline silicon solar cells , 2019, Nature Energy.

[5]  Kwan Bum Choi,et al.  Ultra-thin atomic layer deposited aluminium oxide tunnel layer passivated hole-selective contacts for silicon solar cells , 2019, Solar Energy Materials and Solar Cells.

[6]  Surface Passivation of Industrial Crystalline Silicon Solar Cells , 2018 .

[7]  N. Strandwitz,et al.  Absence of Evidence for Fixed Charge in Metal–Aluminum Oxide–Silicon Tunnel Diodes , 2018, physica status solidi (b).

[8]  A. Cuevas,et al.  Tantalum Nitride Electron‐Selective Contact for Crystalline Silicon Solar Cells , 2018 .

[9]  Yu Huang,et al.  Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions , 2018, Nature.

[10]  W. Kessels,et al.  Passivating Contacts for Crystalline Silicon Solar Cells: From Concepts and Materials to Prospects , 2018, IEEE Journal of Photovoltaics.

[11]  K. Davis,et al.  Influence of surface preparation and cleaning on the passivation of boron diffused silicon surfaces for high efficiency photovoltaics , 2017 .

[12]  A. Gabor,et al.  Detailed investigation of TLM contact resistance measurements on crystalline silicon solar cells , 2017 .

[13]  R. Brendel,et al.  Interdigitated back contact solar cells with polycrystalline silicon on oxide passivating contacts for both polarities , 2017 .

[14]  A. Aberle,et al.  Surface passivation investigation on ultra-thin atomic layer deposited aluminum oxide layers for their potential application to form tunnel layer passivated contacts , 2017 .

[15]  K. Davis,et al.  Transmission electron microscopy based interface analysis of the origin of the variation in surface recombination of silicon for different surface preparation methods and passivation materials , 2017 .

[16]  Xinbo Yang,et al.  Industrially feasible, dopant‐free, carrier‐selective contacts for high‐efficiency silicon solar cells , 2017 .

[17]  A. Javey,et al.  Conductive and Stable Magnesium Oxide Electron‐Selective Contacts for Efficient Silicon Solar Cells , 2017 .

[18]  J. John,et al.  Simplified cleaning for 22.5% nPERT solar cells with rear epitaxial emitters , 2016 .

[19]  R. Brendel,et al.  Contact Selectivity and Efficiency in Crystalline Silicon Photovoltaics , 2016, IEEE Journal of Photovoltaics.

[20]  Xinbo Yang,et al.  High‐Performance TiO2‐Based Electron‐Selective Contacts for Crystalline Silicon Solar Cells , 2016, Advanced materials.

[21]  C. Voz,et al.  Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells , 2016 .

[22]  A. Javey,et al.  Efficient silicon solar cells with dopant-free asymmetric heterocontacts , 2016, Nature Energy.

[23]  T. Mikolajick,et al.  Al2O3-TiO2 Nanolaminates for Conductive Silicon Surface Passivation , 2016, IEEE Journal of Photovoltaics.

[24]  M. Hermle,et al.  Molybdenum and tungsten oxide: High work function wide band gap contact materials for hole selective contacts of silicon solar cells , 2015 .

[25]  J. John,et al.  Large-Area n-Type PERT Solar Cells Featuring Rear p+ Emitter Passivated by ALD Al2 O3 , 2015, IEEE Journal of Photovoltaics.

[26]  Lachlan E. Black,et al.  On effective surface recombination parameters , 2014 .

[27]  S. Glunz,et al.  Carrier-selective contacts for Si solar cells , 2014 .

[28]  C. Battaglia,et al.  Silicon heterojunction solar cell with passivated hole selective MoOx contact , 2014 .

[29]  Keith R. McIntosh,et al.  A Roadmap for PERC Cell Efficiency towards 22%, Focused on Technology-related Constraints , 2014 .

[30]  S. Glunz,et al.  Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics , 2014 .

[31]  K. Jiang,et al.  Influence of precursor gas ratio and firing on silicon surface passivation by APCVD aluminium oxide , 2013 .

[32]  Wmm Erwin Kessels,et al.  Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells , 2012 .

[33]  K. McIntosh,et al.  Surface passivation of c-Si by atmospheric pressure chemical vapor deposition of Al2O3 , 2012 .

[34]  C. Ballif,et al.  High-efficiency Silicon Heterojunction Solar Cells: A Review , 2012 .

[35]  Fred Roozeboom,et al.  High‐Speed Spatial Atomic‐Layer Deposition of Aluminum Oxide Layers for Solar Cell Passivation , 2010, Advanced materials.

[36]  Jan Benick,et al.  High-Efficiency c-Si Solar Cells Passivated With ALD and PECVD Aluminum Oxide , 2010, IEEE Electron Device Letters.

[37]  R. Williams,et al.  Atomic layer deposition of aluminum oxide on hydrophobic and hydrophilic surfaces , 2007 .

[38]  Wmm Erwin Kessels,et al.  Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3 , 2006 .

[39]  D. Schroder,et al.  Contact resistance: Its measurement and relative importance to power loss in a solar cell , 1984, IEEE Transactions on Electron Devices.