On the heat flux vector for flowing granular materials—Part I: effective thermal conductivity and background

Heat transfer plays a major role in the processing of many particulate materials. The heat flux vector is commonly modelled by the Fourier's law of heat conduction and for complex materials such as non-linear fluids, porous media, or granular materials, the coefficient of thermal conductivity is generalized by assuming that it would depend on a host of material and kinematical parameters such as temperature, shear rate, porosity or concentration, etc. In Part I, we will give a brief review of the basic equations of thermodynamics and heat transfer to indicate the importance of the modelling of the heat flux vector. We will also discuss the concept of effective thermal conductivity (ETC) in granular and porous media. In Part II, we propose and subsequently derive a properly frame-invariant constitutive relationship for the heat flux vector for a (single phase) flowing granular medium. Standard methods in continuum mechanics such as representation theorems and homogenization techniques are used. It is shown that the heat flux vector in addition to being proportional to the temperature gradient (the Fourier's law), could also depend on the gradient of density (or volume fraction), and D (the symmetric part of the velocity gradient) in an appropriate manner. The emphasis in this paper is on the idea that for complex non-linear materials it is the heat flux vector which should be studied; obtaining or proposing generalized form of the thermal conductivity is not always appropriate or sufficient. Copyright © 2006 John Wiley & Sons, Ltd.

[1]  Thomas F. Irvine,et al.  Shear rate dependent thermal conductivity measurements of non-Newtonian fluids , 1997 .

[2]  J. Maxwell,et al.  The Dynamical Theory of Gases , 1905, Nature.

[3]  Heat conduction with finite signal time , 1975 .

[4]  Mehrdad Massoudi,et al.  A continuum model for granular materials: Considering dilatancy and the Mohr-Coulomb criterion , 2001 .

[5]  William Schotte,et al.  Thermal conductivity of packed beds , 1960 .

[6]  Joe D. Goddard,et al.  Experiments on the conductivity of suspensions of ionically‐conductive spheres , 1990 .

[7]  Luigi Preziosi,et al.  Addendum to the paper "Heat waves" [Rev. Mod. Phys. 61, 41 (1989)] , 1990 .

[8]  R. Turian,et al.  Thermal conductivity of granular coals, coal-water mixtures and multi-solid/liquid suspensions , 1991 .

[9]  Brian Straughan,et al.  Energy bounds for some non-standard problems in thermoelasticity , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  Shu-San Hsiau,et al.  Effective thermal conductivities of a single species and a binary mixture of granular materials , 2000 .

[11]  H. J. Sauer,et al.  Engineering thermodynamics, 2nd Ed , 1985 .

[12]  Ismail H. Tavman,et al.  Effective thermal conductivity of granular porous materials , 1996 .

[13]  C. L. Tien,et al.  Challenges in Microscale Conductive and Radiative Heat Transfer , 1994 .

[14]  Alexander Z. Zinchenko,et al.  Effective conductivity of loaded granular materials by numerical simulation , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  D. Tzou A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales , 1995 .

[16]  G. R. Hadley,et al.  Thermal conductivity of packed metal powders , 1986 .

[17]  W. Kaminski Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure , 1990 .

[18]  James K. Mitchell,et al.  Conduction phenomena: from theory to geotechnical practice , 1991 .

[19]  Evangelos Tsotsas,et al.  Thermal conductivity of packed beds: A review , 1987 .

[20]  D. Tzou,et al.  On the Wave Theory in Heat Conduction , 1994 .

[21]  ON THE THEORY OF THERMOELASTICITY WITHOUT ENERGY DISSIPATION , 1998 .

[22]  G. Batchelor,et al.  Thermal or electrical conduction through a granular material , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[23]  R. Hetnarski,et al.  Nonclassical dynamical thermoelasticity , 2000 .

[24]  M. Hunt,et al.  Discrete element simulations for granular material flows: effective thermal conductivity and self-diffusivity , 1997 .

[25]  Y. Buyevich On the thermal conductivity of granular materials , 1974 .

[26]  W. Woodside,et al.  Thermal Conductivity of Porous Media. I. Unconsolidated Sands , 1961 .

[27]  G. Batchelor,et al.  Transport Properties of Two-Phase Materials with Random Structure , 1974 .

[28]  R. Hetnarski,et al.  Generalized thermoelasticity: response of semi-space to a short laser pulse , 1994 .

[29]  G. Maugin Constitutive equations for heat conduction in general relativity , 1974 .

[30]  J. Maxwell,et al.  Theory of Heat , 1892 .

[31]  D. Chandrasekharaiah,et al.  Hyperbolic Thermoelasticity: A Review of Recent Literature , 1998 .

[32]  Ravi Prasher,et al.  Dependence of Thermal Conductivity and Mechanical Rigidity of Particle-Laden Polymeric Thermal Interface Material on Particle Volume Fraction , 2003 .

[33]  P. M. Naghdi,et al.  ON UNDAMPED HEAT WAVES IN AN ELASTIC SOLID , 1992 .

[34]  M. Kaviany Principles of heat transfer in porous media , 1991 .

[35]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[36]  Richard B. Hetnarski,et al.  GENERALIZED THERMOELASTICITY: CLOSED-FORM SOLUTIONS , 1993 .

[37]  M. Gurtin,et al.  A general theory of heat conduction with finite wave speeds , 1968 .

[38]  S. Torquato Thermal Conductivity of Disordered Heterogeneous Media from the Microstructure , 1987 .

[39]  R. Larson The Structure and Rheology of Complex Fluids , 1998 .

[40]  Colin B. Brown ENTROPY AND GRANULAR MATERIALS: MODEL , 2000 .

[41]  E. Gonzo Estimating correlations for the effective thermal conductivity of granular materials , 2002 .

[42]  D. Chandrasekharaiah,et al.  Thermoelasticity with Second Sound: A Review , 1986 .

[43]  C. Truesdell,et al.  The Non-Linear Field Theories of Mechanics , 1965 .

[44]  P. M. Naghdi,et al.  A re-examination of the basic postulates of thermomechanics , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[45]  Z. Maroulis,et al.  A STRUCTURAL GENERIC MODEL TO PREDICT THE EFFECTIVE THERMAL CONDUCTIVITY OF GRANULAR MATERIALS , 2001 .

[46]  D. Jeffrey,et al.  Conduction through a random suspension of spheres , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[47]  R. J. Atkin,et al.  A continuum approach to the second-sound effect , 1975 .

[48]  Brian Straughan,et al.  Growth and uniqueness in thermoelasticity , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[49]  R. de Boer,et al.  Theory of Porous Media , 2020, Encyclopedia of Continuum Mechanics.

[50]  I. Müller A thermodynamic theory of mixtures of fluids , 1968 .

[51]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[52]  Kumbakonam R. Rajagopal,et al.  On Implicit Constitutive Theories , 2003 .

[53]  Y. Zhou,et al.  A coupled thermoporoelastic model with thermo-osmosis and thermal-filtration , 1998 .

[54]  R. Rajapakse,et al.  On coupled heat-moisture transfer in deformable porous media , 1994 .

[55]  J.S.M. Botterill,et al.  The effective thermal conductivity of high temperature particulate beds—II. Model predictions and the implication of the experimental values , 1989 .

[56]  Brian Straughan,et al.  A note on discontinuity waves in type III thermoelasticity , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[57]  P. M. Naghdi,et al.  Thermoelasticity without energy dissipation , 1993 .

[58]  David B. Bogy,et al.  ON HEAT CONDUCTION AND WAVE PROPAGATION IN RIGID SOLIDS. , 1970 .

[59]  Andrew C. Fowler,et al.  Mathematical Models in the Applied Sciences , 1997 .

[60]  M. Chester Second Sound in Solids , 1963 .

[61]  Shih‐Yuan Lu,et al.  Effective thermal conductivity of composites containing spheroidal inclusions , 1990 .