Linkage of Geoeffective Stealth CMEs Associated with the Eruption of Coronal Plasma Channel and Jet-Like Structure

[1]  D. Long,et al.  Stealth Coronal Mass Ejections from Active Regions , 2019, The Astrophysical Journal.

[2]  A. Srivastava,et al.  The Evolution of Magnetic Rayleigh–Taylor Unstable Plumes and Hybrid KH-RT Instability into a Loop-like Eruptive Prominence , 2019, The Astrophysical Journal.

[3]  A. Srivastava,et al.  Evolution of Magnetic Rayleigh–Taylor Instability into the Outer Solar Corona and Low Interplanetary Space , 2018, 1802.02293.

[4]  T. Magara,et al.  Flux rope breaking and formation of a rotating blowout jet , 2018, 1802.01798.

[5]  A. Veronig,et al.  The Origin, Early Evolution and Predictability of Solar Eruptions , 2018, The Scientific Foundation of Space Weather.

[6]  H. Koskinen,et al.  Coronal mass ejections and their sheath regions in interplanetary space , 2017, Living Reviews in Solar Physics.

[7]  H. Morgan,et al.  Identification of Low Coronal Sources of “Stealth” Coronal Mass Ejections Using New Image Processing Techniques , 2017 .

[8]  N. Nitta,et al.  Earth-Affecting Coronal Mass Ejections Without Obvious Low Coronal Signatures , 2017 .

[9]  Xiquan Dong,et al.  A radiation closure study of Arctic stratus cloud microphysical properties using the collocated satellite‐surface data and Fu‐Liou radiative transfer model , 2016 .

[10]  J. Luhmann,et al.  A model for stealth coronal mass ejections , 2016, 1612.08323.

[11]  Ronald L. Moore,et al.  Small-scale filament eruptions as the driver of X-ray jets in solar coronal holes , 2015, Nature.

[12]  A. Sterling,et al.  MAGNETIC UNTWISTING IN SOLAR JETS THAT GO INTO THE OUTER CORONA IN POLAR CORONAL HOLES , 2015, 1504.03700.

[13]  S. Poedts,et al.  OBSERVATIONAL CHARACTERISTICS OF CORONAL MASS EJECTIONS WITHOUT LOW-CORONAL SIGNATURES , 2014, 1409.1422.

[14]  G. A. Gary,et al.  A SMALL-SCALE ERUPTION LEADING TO A BLOWOUT MACROSPICULE JET IN AN ON-DISK CORONAL HOLE , 2014 .

[15]  A. Vourlidas,et al.  INNER HELIOSPHERIC EVOLUTION OF A “STEALTH” CME DERIVED FROM MULTI-VIEW IMAGING AND MULTIPOINT IN SITU OBSERVATIONS. I. PROPAGATION TO 1 AU , 2013, 1311.6895.

[16]  A. Srivastava,et al.  A STUDY OF A FAILED CORONAL MASS EJECTION CORE ASSOCIATED WITH AN ASYMMETRIC FILAMENT ERUPTION , 2013, 1304.6852.

[17]  P. Démoulin,et al.  Solar filament eruptions and their physical role in triggering Coronal Mass Ejections , 2012, 1212.4014.

[18]  T. Howard,et al.  Coronal Mass Ejections: Observations , 2012 .

[19]  A. Pevtsov,et al.  Coronal Mass Ejections from Magnetic Systems Encompassing Filament Channels Without Filaments , 2012 .

[20]  W. Pesnell,et al.  The Solar Dynamics Observatory (SDO) , 2012 .

[21]  H. Cane,et al.  Geoeffectiveness (Dst and Kp) of interplanetary coronal mass ejections during 1995–2009 and implications for storm forecasting , 2011 .

[22]  A. Vourlidas,et al.  THE FIRST OBSERVATION OF A RAPIDLY ROTATING CORONAL MASS EJECTION IN THE MIDDLE CORONA , 2011 .

[23]  P. Chen Coronal Mass Ejections: Models and Their Observational Basis , 2011 .

[24]  Jun Zhang,et al.  SDO OBSERVATIONS OF MAGNETIC RECONNECTION AT CORONAL HOLE BOUNDARIES , 2011, 1103.3751.

[25]  C. J. Wolfson,et al.  The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) , 2011 .

[26]  L. Golub,et al.  STATISTICAL STUDY OF CORONAL MASS EJECTIONS WITH AND WITHOUT DISTINCT LOW CORONAL SIGNATURES , 2010 .

[27]  S. McIntosh,et al.  STEREO quadrature observations of coronal dimming at the onset of mini-CMEs , 2010, 1005.2097.

[28]  A. Srivastava,et al.  OBSERVATION OF KINK INSTABILITY DURING SMALL B5.0 SOLAR FLARE ON 2007 JUNE 4 , 2010, 1004.1454.

[29]  V. Yurchyshyn,et al.  ROTATION OF WHITE-LIGHT CORONAL MASS EJECTION STRUCTURES AS INFERRED FROM LASCO CORONAGRAPH , 2009 .

[30]  Angelos Vourlidas,et al.  NO TRACE LEFT BEHIND: STEREO OBSERVATION OF A CORONAL MASS EJECTION WITHOUT LOW CORONAL SIGNATURES , 2009, 0905.2583.

[31]  N. Gopalswamy,et al.  CME interactions with coronal holes and their interplanetary consequences , 2009 .

[32]  V. Archontis,et al.  Eruption of magnetic flux ropes during flux emergence , 2008, 0811.1134.

[33]  Christopher T. Russell,et al.  An advanced approach to finding magnetometer zero levels in the interplanetary magnetic field , 2008 .

[34]  B. Filippov,et al.  Causal relationships between eruptive prominences and coronal mass ejections , 2007, 0711.4752.

[35]  Jie Zhang,et al.  Correction to “Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996–2005” , 2007 .

[36]  B. Inhester Stereoscopy basics for the STEREO mission , 2006, astro-ph/0612649.

[37]  D. Rust The Sun and the Heliosphere as an Integrated System , 2005 .

[38]  Ezequiel Echer,et al.  A study on the peak Dst and peak negative Bz relationship during intense geomagnetic storms , 2005 .

[39]  P. MacNeice,et al.  Observable Properties of the Breakout Model for Coronal Mass Ejections , 2004 .

[40]  N. Gopalswamy A Global Picture of CMEs in the Inner Heliosphere , 2004 .

[41]  T. Sakurai,et al.  The Trigger Mechanism of Solar Flares in a Coronal Arcade with Reversed Magnetic Shear , 2004 .

[42]  Jean-Pierre Wuelser,et al.  EUVI: the STEREO-SECCHI extreme ultraviolet imager , 2004, SPIE Optics + Photonics.

[43]  Silvano Fineschi,et al.  Telescopes and Instrumentation for Solar Astrophysics , 2004 .

[44]  A. Sterling,et al.  Evidence for Gradual External Reconnection before Explosive Eruption of a Solar Filament , 2004 .

[45]  Zoran Mikic,et al.  Coronal Mass Ejection: Initiation, Magnetic Helicity, and Flux Ropes. II. Turbulent Diffusion-driven Evolution , 2003 .

[46]  Russell A. Howard,et al.  Prominence Eruptions and Coronal Mass Ejection: A Statistical Study Using Microwave Observations , 2003 .

[47]  J. Luciani,et al.  Coronal Mass Ejection: Initiation, Magnetic Helicity, and Flux Ropes. I. Boundary Motion-driven Evolution , 2003 .

[48]  N. Srivastava,et al.  Relationship between CME Speed and Geomagnetic Storm Intensity , 2002 .

[49]  H. Hudson,et al.  Solar Disappearing Filament Inside a Coronal Hole , 2002 .

[50]  Yihua Yan,et al.  Evolution of Magnetic Nonpotentiality in NOAA AR 9077 , 2001 .

[51]  H. Hudson,et al.  Onset of the Magnetic Explosion in Solar Flares and Coronal Mass Ejections , 2001 .

[52]  C. J. Wolfson,et al.  Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) , 2000, SPIE Optics + Photonics.

[53]  P. Chen,et al.  An Emerging Flux Trigger Mechanism for Coronal Mass Ejections , 2000 .

[54]  S. Zalesak,et al.  Magnetic structure of overexpanding coronal mass ejections: Numerical models , 2000 .

[55]  J. Luciani,et al.  A Twisted Flux Rope Model for Coronal Mass Ejections and Two-Ribbon Flares , 2000, The Astrophysical journal.

[56]  S. Antiochos,et al.  A Model for Solar Coronal Mass Ejections , 1998, astro-ph/9807220.

[57]  H. Zirin,et al.  Synoptic Hα Full-Disk Observations of the Sun from Big Bear Solar Observatory – I. Instrumentation, Image Processing, Data Products, and First Results , 1999 .

[58]  Y. Kamide,et al.  Statistical nature of geomagnetic storms , 1997 .

[59]  A. Bhatnagar Solar mass ejections and coronal holes , 1996 .

[60]  R. Harrison The nature of solar flares associated with coronal mass ejection. , 1995 .

[61]  R. Lepping,et al.  A method of calibrating magnetometers on a spinning spacecraft , 1995 .

[62]  C. Perche,et al.  WAVES: The radio and plasma wave investigation on the wind spacecraft , 1995 .

[63]  J. Gosling The solar flare myth , 1993 .

[64]  J. Aly Quasi-static evolution of a force-free magnetic field , 1990 .

[65]  Petrus C. H. Martens,et al.  Formation and eruption of solar prominences , 1989 .

[66]  B. Low Evolving force-free magnetic fields. I - The development of the preflare stage , 1977 .

[67]  C. Barnes,et al.  Force-free magnetic-field structures and their role in solar activity. , 1972 .

[68]  D. Mackay,et al.  Solar Prominences , 2021, Oxford Research Encyclopedia of Physics.