Potential energy surfaces of NaFH

High-level ab initio calculations of the ground and several excited-state adiabatic potential surfaces of the NaFH system are reported. These calculations were performed by multireference configuration interaction on a large grid of geometries which allowed them to be used for constructing an accurate analytic representation of the NaFH potential surfaces. For the ground and first excited states, using a genetic algorithm, an analytic 2×2 matrix fit was obtained corresponding to a diabatic representation. The off-diagonal coupling was obtained by fitting the energy gap between the surfaces in the region of their avoided crossing, and the diagonal elements were then fit to reproduce the ab initio adiabatic energy at 1530 points. The full fit was used to locate the barrier and the van der Waals well on the ground-state potential surface, the exciplex on the first-excited-state potential surface, and the minimum energy path for the ground-state Na+HF→NaF+H reaction. Additional calculations on the van der Waa...

[1]  J. Tully Diatomics‐in‐molecules potential energy surfaces. I. First‐row triatomic hydrides , 1973 .

[2]  J. Polanyi,et al.  Photoinduced charge‐transfer dissociation in van der Waals complexes: Na2⋅⋅⋅(ClCH3)n , 1992 .

[3]  Robert J. Buenker,et al.  Individualized configuration selection in CI calculations with subsequent energy extrapolation , 1974 .

[4]  S. Shin,et al.  Photoinitiated Reactions in Weakly Bonded Complexes , 1988 .

[5]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[6]  P. Löwdin,et al.  New Horizons of Quantum Chemistry , 1983 .

[7]  Leo Brewer,et al.  THE DISSOCIATION ENERGIES OF GASEOUS ALKALI HALIDES , 1961 .

[8]  J. V. Lenthe,et al.  State of the Art in Counterpoise Theory , 1994 .

[9]  K. Morokuma,et al.  Ab initio molecular orbital and dynamics study of transition-state spectroscopy , 1991 .

[10]  M. Baer Electronic non-adiabatic transitions derivation of the general adiabatic-diabatic transformation matrix , 1980 .

[11]  T. George,et al.  A new concept in laser-assisted chemistry: the electronic-field representation , 1977 .

[12]  M. Shapiro,et al.  Theory of laser catalyzed reactions. I. Potential surfaces and transition dipoles in the Li+HCl reaction , 1986 .

[13]  T. George Laser-stimulated molecular dynamics and rate processes , 1982 .

[14]  D. Truhlar,et al.  A new diabatic representation of the coupled potential energy surfaces for Na(3p 2P)+H2→Na(3s 2S)+H2 or NaH+H , 1992 .

[15]  M. Paniagua,et al.  Ground- and lowest excited-state MRDCI potential-energy surfaces for the collinear Li+HF reaction , 1993 .

[16]  R. R. Ernst,et al.  Quantum mechanical exchange in a transition metal hydride complex: NMR data for [cp(PPh3)IrH3]+ fitted by a two-dimensional model , 1997 .

[17]  A. H. Nielsen Note Concerning the Paper on F2O , 1951 .

[18]  W. Lester,et al.  Interaction Potential between Li and HF , 1965 .

[19]  J. Tully,et al.  Effects of surface crossing in chemical reactions - The H3 system , 1971 .

[20]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[21]  S. Milošević,et al.  Differential cross sections for reactive and non-reactive scattering of electronically excited Na from HF molecules , 1988 .

[22]  M. Shapiro,et al.  Semiempirical potential surfaces for the alkali hydrogen‐halide reactions , 1979 .

[23]  D. Yarkony,et al.  On the quenching of Na(2P) by HCl: Nonadiabatic effects , 1987 .

[24]  Michael W. Schmidt,et al.  Are atoms intrinsic to molecular electronic wavefunctions? I. The FORS model , 1982 .

[25]  Antonio Laganà,et al.  The potential energy surface of the Na(32S12)+HF(X1Σ+) reaction , 1993 .

[26]  G. Gallup,et al.  A variation‐perturbation method for atomic and molecular interactions. II. The interaction potential and van der Waals molecule for Ne–HF , 1985 .

[27]  Donald G. Truhlar,et al.  Systematic study of basis set superposition errors in the calculated interaction energy of two HF molecules , 1985 .

[28]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[29]  C. Mead,et al.  The effect of a conical intersection on cross sections for collision‐induced dissociation , 1988 .

[30]  A. Aguilar,et al.  Influence of the potential energy surface on the reaction cross section: the K + HF → KF + H system , 1995 .

[31]  S. Langhoff,et al.  Theoretical dissociation energies for the alkali and alkaline-earth monofluorides and monochlorides , 1986 .

[32]  C. Mead,et al.  On the form of the adiabatic and diabatic representation and the validity of the adiabatic approximation for X3 Jahn–Teller systems , 1985 .

[33]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .

[34]  C. Mead,et al.  Conditions for the definition of a strictly diabatic electronic basis for molecular systems , 1982 .

[35]  G. Segal,et al.  Theoretical calculation of the potential curves of the states of HF below 14 eV , 1981 .

[36]  J. Polanyi,et al.  Effect of changing reagent energy. IX. Dependence of reaction rate on rotational excitation in HX(J:ν) + Na → H + NaX (X = F, Cl) , 1978 .

[37]  J. Tully Diatomics‐in‐molecules potential energy surfaces. II. Nonadiabatic and spin‐orbit interactions , 1973 .

[38]  M. Baer Adiabatic and diabatic representations for atom-diatom collisions: Treatment of the three-dimensional case , 1976 .

[39]  Antonio Laganà,et al.  An accurate evaluation of the stationary points of the LiFH potential energy surface , 1989 .

[40]  S. Milošević,et al.  Reactive scattering of sodium and hydrogen fluoride evolving on an electronically excited surface , 1988 .

[41]  Antonio Laganà,et al.  A bond-order LiFH potential energy surface for 3D quantum-mechanical calculations , 1988 .

[42]  M. Baer,et al.  Electronic transitions in the ion-molecule reaction ( Ar + + H 2 →Ar + H 2 + )→Ar H + + H , 1979 .

[43]  J. Polanyi,et al.  Photoinduced charge‐transfer dissociation in van der Waals complexes. II. Na2...ClCH3, Na2...(ClCH3)2, and Na...FPh , 1993 .

[44]  S. Sato,et al.  On a New Method of Drawing the Potential Energy Surface , 1955 .

[45]  P. Weiss,et al.  The reactions of ground and excited state sodium atoms with hydrogen halide molecules , 1988 .

[46]  B. C. Garrett,et al.  Improved parametrization of diatomics‐in‐molecules potential energy surface for Na(3p 2P)+H2 → Na(3s 2S)+H2 , 1983 .

[47]  Donald G. Truhlar,et al.  Trajectory‐surface‐hopping study of Na(3p 2P) +H2 → Na(3s 2S)+H2(v′, j′, θ) , 1983 .

[48]  P. Weiss,et al.  Reactive scattering of Na(3 2P3/2)+HCl , 1986 .

[49]  Mixing of ionic and covalent configurations for sodium hydride, potassium hydride, and hydromagnesium(1+). Potential energy curves and couplings between molecular states , 1975 .

[50]  A. Douglas,et al.  Electronic Spectra of HF and F2 , 1972 .

[51]  D. Yarkony On the quenching of Li(2p) by HCl: Nonadiabatic effects , 1987 .

[52]  William H. Miller Dynamics of Molecular Collisions , 1976 .

[53]  M. Baer Adiabatic and diabatic representations for atom-molecule collisions: Treatment of the collinear arrangement , 1975 .

[54]  D. Herschbach,et al.  Asymptotic approximation for ionic-covalent configuration mixing in hydrogen and alkali hydrides , 1977 .

[55]  C. Tablero,et al.  Application of second-order density functional methods to the calculation of the LiFH potential energy surface: CALCULATION OF THE LiFH POTENTIAL ENERGY SURFACE , 1994 .

[56]  A. D. McLean,et al.  Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18 , 1980 .

[57]  J. Visticot,et al.  Observation of the reactive potential-energy surface of the Ca–HX* system through van der Waals excitation , 1991 .

[58]  K. Morokuma,et al.  Theoretical study of laser-catalyzed Na+HCl reaction : a possibility of transition state spectroscopy , 1990 .

[59]  O. Roncero,et al.  Potential energy surface and wave packet calculations on the Li+HF→LiF+H reaction , 1997 .

[60]  M. Paniagua,et al.  RHF potential energy surface for the collinear reaction of Na with HF , 1986 .

[61]  S. Peyerimhoff,et al.  Ab initio Cl calculation of the effects of Rydberg-valence mixing in the electronic spectrum of the HF molecule , 1982 .

[62]  R. Glowinski,et al.  Computing Methods in Applied Sciences and Engineering , 1974 .

[63]  A. D. McLachlan,et al.  Dynamical Jahn‐Teller Effect in Hydrocarbon Radicals , 1960 .

[64]  P. Fowler,et al.  The long range model of intermolecular forces , 1983 .

[65]  Hans-Joachim Werner,et al.  MCSCF study of the avoided curve crossing of the two lowest 1Σ+ states of LiF , 1981 .

[66]  B. Roos,et al.  A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach , 1980 .

[67]  M. Szczęśniak,et al.  Origins of Structure and Energetics of van der Waals Clusters from ab Initio Calculations , 1994 .

[68]  D. Dehareng,et al.  Constructing approximately diabatic states from LCAO‐SCF‐CI calculations , 1987 .

[69]  J. Visticot,et al.  State selective reactions prepared through the excitation of orbital states in van der Waals complexes of Ca–HX* , 1992 .

[70]  J. Polanyi,et al.  Photoinduced Charge-Transfer Dissociation in van der Waals Complexes. III. Na···FCH3 , 1994 .

[71]  R. Buenker,et al.  Ab initiostudy of NO2: Part II: Non-adiabatic coupling between the two lowest2A′ states and the construction of a diabatic representation , 1990 .

[72]  Stephen R. Langhoff,et al.  Full configuration‐interaction study of the ionic–neutral curve crossing in LiF , 1988 .

[73]  P. Piecuch Potential energy curves for the HF− and CH3F− anions: a coupled cluster study , 1997 .

[74]  B. Soep,et al.  Photochemistry in van der Waals complexes: Observation of the intermediate state of the Hg*,Cl2 reaction , 1983 .

[75]  M. Paniagua,et al.  Potential-energy surfaces for the Li+HF reaction. MRDCI study of the ground- and lower excited-states for doublet LiFH , 1995 .

[76]  J. Mulder,et al.  Ab-initio calculations of the covalent-ionic curve crossing in LiF , 1975 .

[77]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[78]  Antonio Laganà,et al.  On the transition state of the Li + Hcl reaction , 1986 .

[79]  P. Hiberty,et al.  Theoretical study of the ground- and excited-state reactivity of sodium and hydrogen fluoride. Comparison of SCF-CI and VB treatments , 1987 .

[80]  R. Schinke State-Specific Chemistry. (Book Reviews: Photodissociation Dynamics. Spectroscopy and Fragmentation of Small Polyatomic Molecules.) , 1993 .

[81]  Antonio Laganà,et al.  A potential energy surface for the Li+HCl reaction , 1988 .

[82]  M. Baer,et al.  Electronic transitions in the ion-molecule reaction (Ar/sup +/ + H/sub 2/ bold-arrow-left-right Ar + H/sub 2//sup +/). -->. ArH/sup +/ + H , 1979 .

[83]  B. Bederson,et al.  Atom—Molecule Collision Theory: A Guide for the Experimentalist , 1980 .

[84]  B. C. Garrett,et al.  The quenching of Na(3 2P) by H2: Interactions and dynamics , 1982 .

[85]  D. Carroll Chemical laser modeling with genetic algorithms , 1996 .

[86]  I. Shavitt,et al.  Theoretical study of curve crossing: ab initio calculations on the four lowest 1Σ+ states of LiF , 1974 .

[87]  Robert J. Buenker,et al.  Energy extrapolation in CI calculations , 1975 .

[88]  Dudley R. Herschbach,et al.  Long-range configuration interaction of ionic and covalent states , 1974 .

[89]  D. Ham Energy limits in chemiluminescent, atom transfer reactions: Bond dissociation energy of NaF , 1974 .

[90]  L. F. Phillips,et al.  Determination of dissociation constants and heats of formation of simple molecules by flame photometry. Part 8.—Stabilities of the gaseous diatomic halides of certain metals , 1961 .

[91]  D. Truhlar,et al.  Monte Carlo trajectories: Dynamics of the reaction F +D2 on a semiempirical valence-bond potential energy surface , 1973 .

[92]  Leszek Meissner,et al.  Davidson-type corrections for quasidegenerate states , 1985 .

[93]  Mixed‐exponentially generated wave function method for ground, excited, ionized, and electron attached states of a molecule , 1991 .

[94]  Donald G. Truhlar,et al.  Polyatomic canonical variational theory for chemical reaction rates. Separable‐mode formalism with application to OH+H2→H2O+H , 1982 .

[95]  L. Bartolotti,et al.  An experimental and theoretical study of the reactions Na+HCl and Na+DCl , 1989 .

[96]  Henry F. Schaefer,et al.  Potential energy surface for the Li+HF. -->. LiF+H reaction , 1980 .

[97]  J. Catanzarite,et al.  The use of van der Waals forces to orient chemical reactants: The H+CO2 reaction , 1985 .

[98]  Donald G. Truhlar,et al.  MODEL FOR AQUEOUS SOLVATION BASED ON CLASS IV ATOMIC CHARGES AND FIRST SOLVATION SHELL EFFECTS , 1996 .

[99]  A. Douglas,et al.  The Electronic Spectrum of HF. I. The B1Σ+–X1Σ+ Band System , 1973 .

[100]  T. Dunning The low‐lying states of hydrogen fluoride: Potential energy curves for the x 1Σ+, 3Σ+, 3Π, and 1Π states , 1976 .

[101]  T. F. O'Malley Diabatic States of Molecules- Quasistationary Electronic States , 1971 .

[102]  J. M. Wadehra,et al.  Dissociative attachment and vibrational excitation in low-energy collisions of electrons with H2 and D2 , 1979 .

[103]  M. Shapiro,et al.  Semi-empirical potential surfaces for electron transfer reactions: The Li + FH and Li + F2 reactions , 1978 .

[104]  P. Piecuch,et al.  The photoabsorption spectrum of Na⋯FH van der Waals molecule: Comparison of theory and experiment for a harpooning reaction studied by transition state spectroscopy , 1998 .

[105]  C. E. Young,et al.  Energy Distribution Among Products of Exothermic Reactions. II. Repulsive, Mixed, and Attractive Energy Release , 1966 .

[106]  J. Hutson Vibrational dependence of the anisotropic intermolecular potential of Ar–HF , 1992 .

[107]  Antonio Laganà,et al.  Ab initio calculations and dynamical tests of a potential energy surface for the Na + FH reaction , 1997 .

[108]  M. Paniagua,et al.  Analysis of the electronic correlation energy in the LiFH PES using density functional methods , 1989 .

[109]  J. Polanyi,et al.  Effect of changing reagent energy on reaction dynamics. XI. Dependence of reaction rate on vibrational excitation in endothermic reactions HX(vreag)+Na→H+NaX(X≡F,Cl) , 1981 .

[110]  G. G. Balint-Kurti,et al.  Potential energy surfaces for simple chemical reactions:. Application of valence-bond techniques to the Li + HF → LiF + H reaction , 1977 .

[111]  Robert Englman,et al.  A study of the diabatic electronic representation within the Born-Oppenheimer approximation , 1992 .

[112]  Antonio Laganà,et al.  A detailed three‐dimensional quantum study of the Li+FH reaction , 1995 .

[113]  F. Smith,et al.  DIABATIC AND ADIABATIC REPRESENTATIONS FOR ATOMIC COLLISION PROBLEMS. , 1969 .

[114]  J. Delos,et al.  Diabatic and adiabatic representations for atomic collision processes , 1979 .

[115]  J. Visticot,et al.  Transition state observation of excited harpoon reactions, within Ca‐HX van der Waals complexes , 1996 .