Semi-infinite linear diffusion spectroelectrochemistry on an aqueous micro-drop.

We report a technique for conducting semi-infinite diffusion spectroelectrochemistry on an aqueous micro-drop as an easy and economic way of investigating spectroelectrochemical behavior of redox active compounds and correlating spectroscopic properties with thermodynamic potentials on a small scale. The chemical systems used to demonstrate the aqueous micro-drop technique were an absorbance based ionic probe [Fe(CN)(6)](3-/4-) and an emission based ionic probe [Re(dmpe)(3)](2+/+). These chemical systems in a micro-drop were evaluated using cyclic voltammetry and UV-visible absorbance and luminescence spectroscopies.

[1]  W. Heineman,et al.  Measurement of enzyme E'values by optically transparent thin layer electrochemical cells. , 1975, Analytical chemistry.

[2]  R. Wightman,et al.  Spectroelectrochemistry of N‐Retinylidene‐n‐butylamine , 1981 .

[3]  W. Heineman,et al.  Thin-layer spectroelectrochemical studies of cobalt and copper Schiff base complexes , 1979 .

[4]  A. Bewick,et al.  Studies of the cathodic adsorption of hydrogen and the anodic formation of oxide on platinum in perchloric acid solutions using modulated specular reflectance spectroscopy , 1970 .

[5]  J. Salbeck An electrochemical cell for simultaneous electrochemical and spectroelectrochemical measurements under semi-infinite diffusion conditions and thin-layer conditions , 1992 .

[6]  A. Lindgren,et al.  Spectroelectrochemical study of cellobiose dehydrogenase and diaphorase in a thiol-modified gold capillary in the absence of mediators. , 2001, Bioelectrochemistry.

[7]  H. Siegenthaler,et al.  Synthesis and spectroelectrochemical properties of pentaammineruthenium(II) complexes of quinone diimines , 1975 .

[8]  G. Dryhurst,et al.  Electrochemical oxidation of uric acid and xanthine: An investigation by cyclic voltammetry, double potential step chronoamperometry and thin-layer spectroelectrochemistry , 1978 .

[9]  Theodore Kuwana,et al.  Electrochemical Studies Using Conducting Glass Indicator Electrodes. , 1964 .

[10]  M. Comtat,et al.  Some examples of the use of thin layer spectroelectrochemistry in the study of electron transfer between metals and enzymes , 1994 .

[11]  William R. Heineman,et al.  Micro volume rotating disk electrode (RDE) amperometric detection for a bead-based immunoassay , 1999 .

[12]  H. Gray,et al.  Electronic structures of hexacyanometalate complexes , 1968 .

[13]  T. Kuwana,et al.  High Sensitivity Internal Reflection Spectroelectrochemistry for Direct Monitoring of Diffusing Species Using Signal Averaging , 1971 .

[14]  R. Pruiksma Theory for optical monitoring of electrogenerated species via specular reflection at all angles assuming semi-infinite linear diffusion , 1980 .

[15]  Harry B. Mark,et al.  Simultaneous electrochemical and internal-reflection spectrometric measurements using gold-film electrodes , 1968 .

[16]  T. Kuwana,et al.  Kinetic and mechanism studies of o-tolidine electro-oxidation using optically transparent electrodes , 1968 .

[17]  W. Kaim,et al.  Reactions of New Organoplatinum(II) and -(IV) Complexes of 1,4-Diaza-1,3-butadienes with Light and Electrons. Emission vs Photochemistry and the Electronic Structures of Ground, Reduced, Oxidized, and Low-Lying Charge-Transfer Excited States† , 1998 .

[18]  Theodore Kuwana,et al.  Electrochemical-spectroscopy using tin oxide-coated optically transparent electrodes , 1968 .

[19]  Z. Qian,et al.  Electrochemical Deposition of Prussian Blue from a Single Ferricyanide Solution , 1998 .

[20]  T. Kuwana,et al.  Spectroelectrochemical cell with adjustable solution layer thickness , 1984 .

[21]  E. Levillain,et al.  Visible time-resolved spectroelectrochemistry: application to study of the reduction of sulfur (S8) in dimethylformamide , 1995 .

[22]  W. Heineman,et al.  Study of electrogenerated reactants using optically transparent electrodes , 1976 .

[23]  T. Kuwana,et al.  Non-aqueous electrochemistry using optically transparent electrodes , 1969 .

[24]  G. Hitchings,et al.  A comparison of the specificities of xanthine oxidase and aldehyde oxidase. , 1972, Archives of biochemistry and biophysics.

[25]  B. McDuffie,et al.  Diffusion coefficients of ferri- and ferrocyanide ions in aqueous media, using twin-electrode thin-layer electrochemistry , 1970 .

[26]  K. Ogura,et al.  Absorbance-time relationship at optically transparent electrode , 1982 .

[27]  W. Heineman Spectroelectrochemistry. Combination of optical and electrochemical techniques for studies of redox chemistry , 1978 .

[28]  William R. Heineman,et al.  Spectroelectrochemical studies of metal deposition and stripping and of specific adsorption on mercury-platinum optically transparent electrodes , 1972 .

[29]  A. Bewick,et al.  Studies of electrochemically generated reaction intermediates using modulated specular reflectance spectroscopy , 1973 .

[30]  Theodore Kuwana,et al.  Observation of electrode-solution interface by means of internal reflection spectrometry , 1966 .

[31]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[32]  H. Toma,et al.  Spectroelectrochemical characterization of organic and metal-organic compounds , 2002 .

[33]  W. Heineman,et al.  ELECTROCHEMISTRY AND SPECTROELECTROCHEMISTRY OF RE(1,2-BIS(DIMETHYLPHOSPHINO)ETHANE)3+ , 1997 .

[34]  H. Gray,et al.  Studies of the thermodynamics of electron transfer reactions of blue copper proteins , 1979 .

[35]  M. Hill,et al.  Oligothiophene Cation Radicals. π-Dimers as Alternatives to Bipolarons in Oxidized Polythiophenes , 1992 .

[36]  W. Kaim,et al.  Electronic structure alternatives in nitrosylruthenium complexes. , 2010, Dalton transactions.

[37]  T. Kuwana,et al.  Characteristics of the electrode-solution interface under faradaic and non-faradaic conditions as observed by internal reflection spectroscopy , 1969 .