Real-time protection of the JET ITER-like wall based on near infrared imaging diagnostic systems

In JET with ITER-like wall (JET-ILW), the first wall was changed to metallic materials (tungsten and beryllium) [1] which require a reliable protection system to avoid damage of the plasma-facing c ...

[1]  L. Thomas Thermal Radiation from Rough Tungsten Surfaces in Normal and Off‐Normal Directions , 1968 .

[2]  S. Wolfe,et al.  Marfe: an edge plasma phenomenon , 1984 .

[3]  A. Ramsey,et al.  HAIFA: A modular, fiber‐optic coupled, spectroscopic diagnostic for plasmas , 1987 .

[4]  A. Herrmann,et al.  Optical Surface Temperature Measurement , 1996 .

[5]  S. Sangwine,et al.  The Colour Image Processing Handbook , 1998, Springer US.

[6]  V. Riccardo,et al.  Disruption heat loads on the JET MkIIGB divertor , 2002 .

[7]  A. Herrmann,et al.  Overview on stationary and transient divertor heat loads , 2002 .

[8]  A. Loarte,et al.  Timescale and magnitude of plasma thermal energy loss before and during disruptions in JET , 2005 .

[9]  Jochen Linke,et al.  Characterization and heat flux testing of beryllium coatings on Inconel for JET ITER-like wall project , 2007 .

[10]  P. Oelhafen,et al.  Rhodium coated mirrors deposited by magnetron sputtering for fusion applications. , 2007, The Review of scientific instruments.

[11]  V. S. Voitsenya,et al.  First mirrors for diagnostic systems of ITER , 2007 .

[12]  P. Oelhafen,et al.  Characterization of sub-stoichiometric rhodium oxide deposited by magnetron sputtering , 2008 .

[13]  H. Greuner,et al.  Qualification of tungsten coatings on plasma-facing components for JET , 2009 .

[14]  R. Steiner,et al.  Reactivity of rhodium during co-deposition of rhodium and carbon , 2009 .

[15]  Gerald Pintsuk,et al.  Clamping of solid tungsten components for the bulk W divertor row in JET—precautionary design for a brittle material , 2009 .

[16]  R. Igreja,et al.  Enhancement of JET’s mirror-link near-ultraviolet to near-infrared divertor spectroscopy system. , 2010, The Review of scientific instruments.

[17]  P. de Marne,et al.  Real-time protection of in-vessel components in ASDEX Upgrade , 2011 .

[18]  T. Eich,et al.  Inter-ELM power decay length for JET and ASDEX upgrade: measurement and comparison with heuristic drift-based model. , 2011, Physical review letters.

[19]  M. N. A. Beurskens,et al.  JET ITER-like wall—overview and experimental programme , 2011 .

[20]  G. Arnoux,et al.  REAL-TIME PROTECTION OF THE "ITER-LIKE WALL AT JET" , 2011 .

[21]  K-D Zastrow,et al.  Implementation of an in-vessel calibration light source for JET. , 2012, The Review of scientific instruments.

[22]  P McCullen,et al.  A protection system for the JET ITER-like wall based on imaging diagnostics. , 2012, The Review of scientific instruments.

[23]  S. Brezinsek,et al.  Plasma Facing Materials for the JET ITER-Like Wall , 2012 .

[24]  P. J. Lomas,et al.  Vessel thermal map real-time system for the JET tokamak , 2012 .

[25]  A. Murari,et al.  Development of a mirror-based endoscope for divertor spectroscopy on JET with the new ITER-like wall (invited). , 2012, The Review of scientific instruments.

[26]  J. Contributors,et al.  A new radiation-hard endoscope for divertor spectroscopy on JET , 2013 .

[27]  R. Neu,et al.  Long-term evolution of the impurity composition and impurity events with the ITER-like wall at JET , 2013 .

[28]  L. Horton The JET ITER-like wall experiment: First results and lessons for ITER , 2013 .

[29]  N. Balshaw,et al.  A wide angle view imaging diagnostic with all reflective, in-vessel optics at JET , 2013 .

[30]  Jet Efda Contributors,et al.  Power load studies in JET and ASDEX-Upgrade with full-W divertors , 2013 .

[31]  S. Brezinsek,et al.  Plasma-surface interaction in the Be/W environment: Conclusions drawn from the JET-ILW for ITER , 2015 .

[32]  J. Linke,et al.  Investigation of the impact of transient heat loads applied by laser irradiation on ITER-grade tungsten , 2014 .

[33]  Olaf Neubauer,et al.  Status of the R&D activities to the design of an ITER core CXRS diagnostic system , 2015 .

[34]  P. Petersson,et al.  Co-deposited layers in the divertor region of JET-ILW , 2015 .

[35]  J. Contributors,et al.  ELM induced tungsten melting and its impact on tokamak operation , 2015 .

[36]  J. Contributors,et al.  Optical Coatings as Mirrors for Optical Diagnostics , 2016 .

[37]  J. Contributors,et al.  Erosion and deposition in the JET divertor during the first ILW campaign , 2016 .

[38]  H. Greuner,et al.  Kinetics of carbide formation in the molybdenum–tungsten coatings used in the ITER-like Wall , 2016 .

[39]  K-D Zastrow,et al.  In-vessel calibration of the imaging diagnostics for the real-time protection of the JET ITER-like wall. , 2016, The Review of scientific instruments.

[40]  K-D Zastrow,et al.  Recent developments of in-vessel calibration of mid-IR cameras at JET. , 2016, The Review of scientific instruments.

[41]  J. Contributors,et al.  Overview of fuel inventory in JET with the ITER-like wall , 2017 .

[42]  K. Zastrow,et al.  Response of the imaging cameras to hard radiation during JET operation , 2017 .

[43]  J. Contributors,et al.  Assessment of erosion, deposition and fuel retention in the JET-ILW divertor from ion beam analysis data , 2017 .

[44]  K. Heinola,et al.  Erosion and deposition in the JET divertor during the second ITER-like wall campaign , 2017 .

[45]  I. Balboa,et al.  JUVIL: A new innovative software framework for data analysis of JET imaging systems intended for the study of plasma physics and machine operational safety , 2017 .

[46]  J. Contributors,et al.  Overview of the JET ITER-like wall divertor , 2017 .

[47]  J. Garcia,et al.  Impact of divertor geometry on H-mode confinement in the JET metallic wall , 2017 .

[48]  S. Lanthaler,et al.  Overview of the JET results in support to ITER , 2017, Nuclear Fusion.