Implicit numerical integration of a three-invariant, isotropic/kinematic hardening cap plasticity model for geomaterials

The mechanical constitutive behavior of geomaterials is quite complex, involving pressure-sensitive yielding, differences in strength in triaxial extension vs. compression, the Bauschinger effect, dependence on porosity, and other factors. Capturing these behaviors necessitates the use of fairly complicated and expensive non-linear material models. For elastically isotropic materials, such models usually involve three-invariant plasticity formulations. Spectral decomposition has been used to increase the efficiency of numerical simulation for such models for the isotropically hardening case. We modify the spectral decomposition technique to models that include kinematic hardening. Finally, we perform some numerical simulations to demonstrate quadratic convergence.

[1]  J. C. Simo,et al.  Numerical analysis and simulation of plasticity , 1998 .

[2]  S. Hartmann,et al.  AN EFFICIENT STRESS ALGORITHM WITH APPLICATIONS IN VISCOPLASTICITY AND PLASTICITY , 1997 .

[3]  Paul E. Senseny,et al.  Non‐associative constitutive laws for low porosity rocks , 1983 .

[4]  Ray W. Ogden,et al.  Nonlinear Elastic Deformations , 1985 .

[5]  J. C. Simo,et al.  Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory , 1992 .

[6]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[7]  George Y. Baladi,et al.  Generalized Cap Model for Geological Materials , 1976 .

[8]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[9]  M. Gurtin,et al.  Thermodynamics with Internal State Variables , 1967 .

[10]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[11]  Francisco J. Montáns,et al.  Implicit multilayerJ2-plasticity using Prager's translation rule , 2001 .

[12]  Mohamed Rouainia,et al.  Implicit numerical integration for a kinematic hardening soil plasticity model , 2001 .

[13]  A. F. Fossum,et al.  Cap Plasticity Models and Compactive and Dilatant Pre-Failure Deformation , 2000 .

[14]  Majid T. Manzari,et al.  On integration of a cyclic soil plasticity model , 2001 .

[15]  John Sawyer,et al.  An implicit algorithm using explicit correctors for the kinematic hardening model with multiple back stresses , 2001 .

[16]  A. Khoei,et al.  An implicit algorithm for hypoelasto-plastic and hypoelasto-viscoplastic endochronic theory in finite strain isotropic–kinematic-hardening model , 2003 .

[17]  Rebecca M. Brannon,et al.  The Sandia GeoModel : theory and user's guide. , 2004 .

[18]  Nobutada Ohno,et al.  Implementation of cyclic plasticity models based on a general form of kinematic hardening , 2002 .

[19]  J. Fredrich,et al.  Micromechanics of compaction in an analogue reservoir sandstone , 2000 .

[20]  Ronaldo I. Borja,et al.  On the numerical integration of three-invariant elastoplastic constitutive models , 2003 .

[21]  K. Runesson,et al.  A Class of Thermo-Hyperelastic-Viscoplastic Models for Porous Materials: Theory and Numerics , 2001 .

[22]  Issam Doghri,et al.  Fully implicit integration and consistent tangent modulus in elasto‐plasticity , 1993 .

[23]  Roberto Nova,et al.  A Generalized Backward Euler algorithm for the numerical integration of an isotropic hardening elastoplastic model for mechanical and chemical degradation of bonded geomaterials , 2002 .

[24]  Robert L. Taylor,et al.  Finite element implementation of non-linear elastoplastic constitutive laws using local and global explicit algorithms with automatic error control† , 2001 .

[25]  I. S. Sandler,et al.  An algorithm and a modular subroutine for the CAP model , 1979 .