Pre‐processing, registration and selection of adaptive optics corrected retinal images

In this paper, the aim is to demonstrate enhanced processing of sequences of fundus images obtained using a commercial AO flood illumination system. The purpose of the work is to (1) correct for uneven illumination at the retina (2) automatically select the best quality images and (3) precisely register the best images.

[1]  Austin Roorda,et al.  Adaptive optics for studying visual function: a comprehensive review. , 2011, Journal of vision.

[2]  D Tomazevic,et al.  Comparative evaluation of retrospective shading correction methods , 2002, Journal of microscopy.

[3]  David Williams,et al.  Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope , 2011, Biomedical optics express.

[4]  José Manuel Bravo,et al.  A New Supervised Method for Blood Vessel Segmentation in Retinal Images by Using Gray-Level and Moment Invariants-Based Features , 2011, IEEE Transactions on Medical Imaging.

[5]  Hyun-Chul Kim,et al.  Subjective Image-Quality Estimation Based on Psychophysical Experimentation , 2007, PSIVT.

[6]  Austin Roorda,et al.  Adaptive optics retinal imaging: emerging clinical applications. , 2010, Optometry and vision science : official publication of the American Academy of Optometry.

[7]  Yudong Zhang,et al.  Tracking features in retinal images of adaptive optics confocal scanning laser ophthalmoscope using KLT-SIFT algorithm , 2010, Biomedical optics express.

[8]  Enrico Grisan,et al.  Luminosity and contrast normalization in retinal images , 2005, Medical Image Anal..

[9]  Nizan Meitav,et al.  Improving retinal image resolution with iterative weighted shift-and-add. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[10]  Fernando De la Rosa,et al.  Realtime Image Sharpening , 1988 .

[11]  Phillip Bedggood,et al.  Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging. , 2008, Journal of biomedical optics.

[12]  Lina J. Karam,et al.  No-reference objective wavelet based noise immune image sharpness metric , 2005, IEEE International Conference on Image Processing 2005.

[13]  J J Miller,et al.  Aberration correction by maximizing generalized sharpness metrics. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[14]  J. G. Robertson,et al.  GETTING LUCKY WITH ADAPTIVE OPTICS: FAST ADAPTIVE OPTICS IMAGE SELECTION IN THE VISIBLE WITH A LARGE TELESCOPE , 2008, 0805.1921.

[15]  Filip Sroubek,et al.  Retinal image restoration by means of blind deconvolution. , 2011, Journal of biomedical optics.

[16]  Toby P. Breckon,et al.  Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab , 2011 .

[17]  Ayyakkannu Manivannan,et al.  Automated drusen detection in retinal images using analytical modelling algorithms , 2011, Biomedical engineering online.

[18]  Austin Roorda,et al.  Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope , 2011, Biomedical optics express.

[19]  P F Sharp,et al.  The preprocessing of retinal images for the detection of fluorescein leakage. , 1999, Physics in medicine and biology.

[20]  Xavier Levecq,et al.  Imaging microscopic structures in pathological retinas using a flood-illumination adaptive optics retinal camera , 2011, BiOS.

[21]  Austin Roorda,et al.  Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy. , 2006, Optics express.

[22]  John S Werner,et al.  Photoreceptor counting and montaging of en-face retinal images from an adaptive optics fundus camera. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[23]  Viergever,et al.  Retrospective shading correction based on entropy minimization , 2000, Journal of microscopy.

[24]  Matthew T. Sheehan,et al.  Investigation of the isoplanatic patch and wavefront aberration along the pupillary axis compared to the line of sight in the eye , 2012, Biomedical optics express.

[25]  J. Olson,et al.  Automated assessment of diabetic retinal image quality based on clarity and field definition. , 2006, Investigative ophthalmology & visual science.

[26]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[27]  Laurent M. Mugnier,et al.  Sub-pixel image registration with a maximum likelihood estimator. Application to the first adaptive optics observations of Arp 220 in the L' band , 2005 .

[28]  M. Lombardo,et al.  Optimal parameters to improve the interface quality of the flap bed in femtosecond laser‐assisted laser in situ keratomileusis , 2012, Journal of cataract and refractive surgery.

[29]  Rony Ferzli,et al.  Efficient implementation of kurtosis based no reference image sharpness metric , 2010, Electronic Imaging.

[30]  Lili Xu,et al.  A novel method for blood vessel detection from retinal images , 2010, Biomedical engineering online.

[31]  R. Muller,et al.  Real-time correction of atmospherically degraded telescope images through image sharpening , 1974 .

[32]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[33]  S Faisan,et al.  Scanning ophthalmoscope retinal image registration using one-dimensional deformation fields. , 2011, Optics express.