A Unified Primal-Dual Algorithm Framework Based on Bregman Iteration

In this paper, we propose a unified primal-dual algorithm framework for two classes of problems that arise from various signal and image processing applications. We also show the connections to existing methods, in particular Bregman iteration (Osher et al., Multiscale Model. Simul. 4(2):460–489, 2005) based methods, such as linearized Bregman (Osher et al., Commun. Math. Sci. 8(1):93–111, 2010; Cai et al., SIAM J. Imag. Sci. 2(1):226–252, 2009, CAM Report 09-28, UCLA, March 2009; Yin, CAAM Report, Rice University, 2009) and split Bregman (Goldstein and Osher, SIAM J. Imag. Sci., 2, 2009). The convergence of the general algorithm framework is proved under mild assumptions. The applications to ℓ1 basis pursuit, TV−L2 minimization and matrix completion are demonstrated. Finally, the numerical examples show the algorithms proposed are easy to implement, efficient, stable and flexible enough to cover a wide variety of applications.

[1]  Avinash C. Kak,et al.  Principles of computerized tomographic imaging , 2001, Classics in applied mathematics.

[2]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[3]  A. Chambolle Practical, Unified, Motion and Missing Data Treatment in Degraded Video , 2004, Journal of Mathematical Imaging and Vision.

[4]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[5]  Junfeng Yang,et al.  An Efficient TVL1 Algorithm for Deblurring Multichannel Images Corrupted by Impulsive Noise , 2009, SIAM J. Sci. Comput..

[6]  D. Gabay Applications of the method of multipliers to variational inequalities , 1983 .

[7]  Y. Censor,et al.  An iterative row-action method for interval convex programming , 1981 .

[8]  S. Osher,et al.  Coordinate descent optimization for l 1 minimization with application to compressed sensing; a greedy algorithm , 2009 .

[9]  Jian-Feng Cai,et al.  Split Bregman Methods and Frame Based Image Restoration , 2009, Multiscale Model. Simul..

[10]  Shiqian Ma,et al.  Fixed point and Bregman iterative methods for matrix rank minimization , 2009, Math. Program..

[11]  Frank Morley On the metric geometry of the plane $n$-line , 1900 .

[12]  Simon Setzer,et al.  Split Bregman Algorithm, Douglas-Rachford Splitting and Frame Shrinkage , 2009, SSVM.

[13]  M. J. D. Powell,et al.  A method for nonlinear constraints in minimization problems , 1969 .

[14]  Jérôme Darbon,et al.  A Simple Compressive Sensing Algorithm for Parallel Many-Core Architectures , 2013, J. Signal Process. Syst..

[15]  Apostol T. Vassilev,et al.  Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .

[16]  Marc Teboulle,et al.  Convergence Analysis of a Proximal-Like Minimization Algorithm Using Bregman Functions , 1993, SIAM J. Optim..

[17]  Valeria Ruggiero,et al.  On the Convergence of Primal–Dual Hybrid Gradient Algorithms for Total Variation Image Restoration , 2012, Journal of Mathematical Imaging and Vision.

[18]  Marc Teboulle,et al.  A fast Iterative Shrinkage-Thresholding Algorithm with application to wavelet-based image deblurring , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[19]  Jian-Feng Cai,et al.  Convergence of the linearized Bregman iteration for ℓ1-norm minimization , 2009, Math. Comput..

[20]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[21]  E. Candès,et al.  Exact low-rank matrix completion via convex optimization , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[22]  Xavier Bresson,et al.  Bregmanized Nonlocal Regularization for Deconvolution and Sparse Reconstruction , 2010, SIAM J. Imaging Sci..

[23]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[24]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[25]  Stephen P. Boyd,et al.  An Interior-Point Method for Large-Scale $\ell_1$-Regularized Least Squares , 2007, IEEE Journal of Selected Topics in Signal Processing.

[26]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[27]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[28]  C. Lemaréchal,et al.  Practical aspects of the Moreau-Yosida regularization I : theoretical properties , 1994 .

[29]  Knut-Andreas Lie,et al.  Scale Space and Variational Methods in Computer Vision, Second International Conference, SSVM 2009, Voss, Norway, June 1-5, 2009. Proceedings , 2009, SSVM.

[30]  Mingqiang Zhu,et al.  An Efficient Primal-Dual Hybrid Gradient Algorithm For Total Variation Image Restoration , 2008 .

[31]  Claude Lemaréchal,et al.  Practical Aspects of the Moreau-Yosida Regularization: Theoretical Preliminaries , 1997, SIAM J. Optim..

[32]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[33]  Marc Teboulle,et al.  A proximal-based decomposition method for convex minimization problems , 1994, Math. Program..

[34]  Wotao Yin,et al.  Analysis and Generalizations of the Linearized Bregman Method , 2010, SIAM J. Imaging Sci..

[35]  M. Hestenes Multiplier and gradient methods , 1969 .

[36]  Jian-Feng Cai,et al.  Linearized Bregman Iterations for Frame-Based Image Deblurring , 2009, SIAM J. Imaging Sci..

[37]  J. Moreau Fonctions convexes duales et points proximaux dans un espace hilbertien , 1962 .

[38]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[39]  Xue-Cheng Tai,et al.  Augmented Lagrangian Method, Dual Methods and Split Bregman Iteration for ROF Model , 2009, SSVM.

[40]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[41]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[42]  Ernie Esser,et al.  Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman , 2009 .

[43]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[44]  R. Tyrrell Rockafellar,et al.  Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..

[45]  Bin Dong,et al.  Fast Linearized Bregman Iteration for Compressive Sensing and Sparse Denoising , 2011, ArXiv.

[46]  Michael K. Ng,et al.  A Fast l1-TV Algorithm for Image Restoration , 2009, SIAM J. Sci. Comput..

[47]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[48]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[49]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[50]  Wotao Yin,et al.  A Fixed-Point Continuation Method for L_1-Regularization with Application to Compressed Sensing , 2007 .

[51]  Yin Zhang,et al.  Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..

[52]  Xavier Bresson,et al.  Geometric Applications of the Split Bregman Method: Segmentation and Surface Reconstruction , 2010, J. Sci. Comput..

[53]  ANTONIN CHAMBOLLE,et al.  An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.

[54]  B. V. Dean,et al.  Studies in Linear and Non-Linear Programming. , 1959 .

[55]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[56]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[57]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.