Ordinal regression models for zero-inflated and/or over-dispersed count data

[1]  P. Psychas,et al.  Detecting local risk factors for residual malaria in northern Ghana using Bayesian model averaging , 2018, Malaria Journal.

[2]  Carsten F. Dormann,et al.  Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure , 2017 .

[3]  S. Wood Generalized Additive Models: An Introduction with R, Second Edition , 2017 .

[4]  S. Rifai,et al.  Does deforestation promote or inhibit malaria transmission in the Amazon? A systematic literature review and critical appraisal of current evidence , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[5]  Ken Aho,et al.  Model selection for ecologists: the worldviews of AIC and BIC. , 2014, Ecology.

[6]  A. Cunha,et al.  DISTRIBUIÇÃO MENSAL E ATIVIDADE HORÁRIA DE Anopheles (DIPTERA: CULICIDAE) EM UMA ÁREA RURAL DA AMAZÔNIA ORIENTAL. , 2013 .

[7]  Bani K. Mallick,et al.  Hyperspectral remote sensing of plant biochemistry using Bayesian model averaging with variable and band selection , 2013 .

[8]  Kai Zhu,et al.  The k‐ZIG: Flexible Modeling for Zero‐Inflated Counts , 2012, Biometrics.

[9]  Andreas Lindén,et al.  Using the negative binomial distribution to model overdispersion in ecological count data. , 2011, Ecology.

[10]  E Roux,et al.  Unravelling the relationships between Anopheles darlingi (Diptera: Culicidae) densities, environmental factors and malaria incidence: understanding the variable patterns of malarial transmission in French Guiana (South America) , 2011, Annals of tropical medicine and parasitology.

[11]  Anna Genell,et al.  Model selection in Medical Research: A simulation study comparing Bayesian Model Averaging and Stepwise Regression , 2010, BMC medical research methodology.

[12]  G. Sileshi,et al.  Traditional occupancy–abundance models are inadequate for zero-inflated ecological count data , 2009 .

[13]  James W. Jones,et al.  Seasonal Distribution, Biology, and Human Attraction Patterns of Mosquitoes (Diptera: Culicidae) in a Rural Village and Adjacent Forested Site Near Iquitos, Peru , 2008, Journal of medical entomology.

[14]  J. V. Ver Hoef,et al.  Quasi-Poisson vs. negative binomial regression: how should we model overdispersed count data? , 2007, Ecology.

[15]  Alan Y. Chiang,et al.  Generalized Additive Models: An Introduction With R , 2007, Technometrics.

[16]  L. P. Lounibos,et al.  Malaria vector incrimination in three rural riverine villages in the Brazilian Amazon. , 2007, The American journal of tropical medicine and hygiene.

[17]  Jane Elith,et al.  Comparing species abundance models , 2006 .

[18]  Hugh P Possingham,et al.  Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. , 2005, Ecology letters.

[19]  David I. Warton,et al.  Many zeros does not mean zero inflation: comparing the goodness‐of‐fit of parametric models to multivariate abundance data , 2005 .

[20]  Harry Joe,et al.  Generalized Poisson Distribution: the Property of Mixture of Poisson and Comparison with Negative Binomial Distribution , 2005, Biometrical journal. Biometrische Zeitschrift.

[21]  C. Flores-Mendoza,et al.  Geographical distribution of Anopheles darlingi in the Amazon Basin region of Peru. , 2003, Journal of the American Mosquito Control Association.

[22]  Christopher Holmes,et al.  Bayesian Methods for Nonlinear Classification and Regressing , 2002 .

[23]  M. Póvoa,et al.  Biting indices, host-seeking activity and natural infection rates of anopheline species in Boa Vista, Roraima, Brazil from 1996 to 1998. , 2002, Memorias do Instituto Oswaldo Cruz.

[24]  M. Póvoa,et al.  Malaria vectors in the municipality of Serra do Navio, State of Amapá, Amazon Region, Brazil. , 2001, Memorias do Instituto Oswaldo Cruz.

[25]  R Moyeed,et al.  Spatial modelling of individual-level parasite counts using the negative binomial distribution. , 2000, Biostatistics.

[26]  L. P. Lounibos,et al.  Malaria Vector Heterogeneity in South America , 2000 .

[27]  W. Tadei,et al.  Malaria vectors in the Brazilian amazon: Anopheles of the subgenus Nyssorhynchus. , 2000, Revista do Instituto de Medicina Tropical de Sao Paulo.

[28]  A. Welsh,et al.  Methodology for Estimating the Abundance of Rare Animals: Seabird Nesting on North East Herald Cay , 2000, Biometrics.

[29]  G. White,et al.  Analysis of Frequency Count Data Using the Negative Binomial Distribution , 1996 .

[30]  D. Lindenmayer,et al.  Modelling the abundance of rare species: statistical models for counts with extra zeros , 1996 .

[31]  A. Dobson,et al.  Patterns of macroparasite abundance and aggregation in wildlife populations: a quantitative review , 1995, Parasitology.

[32]  Diane Lambert,et al.  Zero-inflacted Poisson regression, with an application to defects in manufacturing , 1992 .

[33]  Alan Agresti,et al.  Categorical Data Analysis , 2003 .

[34]  J. Nedelman A negative binomial model for sampling mosquitoes in a malaria survey. , 1983, Biometrics.

[35]  Daniel Coppard,et al.  Quantitative Review , 2020, Encyclopedia of Personality and Individual Differences.

[36]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[37]  Robert H Gilman,et al.  The effect of deforestation on the human-biting rate of Anopheles darlingi, the primary vector of Falciparum malaria in the Peruvian Amazon. , 2006, The American journal of tropical medicine and hygiene.

[38]  Dominique Lord,et al.  Poisson, Poisson-gamma and zero-inflated regression models of motor vehicle crashes: balancing statistical fit and theory. , 2005, Accident; analysis and prevention.

[39]  Martyn Plummer,et al.  JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling , 2003 .

[40]  C. Schlichting,et al.  Emergence of a new neotropical malaria vector facilitated by human migration and changes in land use. , 2002, The American journal of tropical medicine and hygiene.

[41]  P. McCullagh Regression Models for Ordinal Data , 1980 .