Forecasting U.S. Tourist arrivals using optimal Singular Spectrum Analysis

[1]  E. Silva,et al.  Evaluating the effectiveness of parametric and nonparametric energy consumption forecasts for a developing country , 2014 .

[2]  Emmanuel Sirimal Silva,et al.  A COMBINATION FORECAST FOR ENERGY-RELATED CO2 EMISSIONS IN THE UNITED STATES , 2013 .

[3]  George Athanasopoulos,et al.  Forecasting: principles and practice , 2013 .

[4]  Anatoly Zhigljavsky,et al.  Forecasting UK Industrial Production with Multivariate Singular Spectrum Analysis , 2013 .

[5]  Emmanuel Sirimal Silva,et al.  ANALYSING AND FORECASTING EUROPEAN UNION ENERGY DATA , 2013 .

[6]  Shui Ki Wan,et al.  AGGREGATE VS. DISAGGREGATE FORECAST: CASE OF HONG KONG , 2013 .

[7]  Abdol S. Soofi,et al.  Predicting inflation dynamics with singular spectrum analysis , 2013 .

[8]  Haiyan Song,et al.  Combining statistical and judgmental forecasts via a web-based tourism demand forecasting system , 2013 .

[9]  Hossein Hassani,et al.  MULTIVARIATE SINGULAR SPECTRUM ANALYSIS: A GENERAL VIEW AND NEW VECTOR FORECASTING APPROACH , 2013 .

[10]  Gang Li,et al.  Tourism economics research: A review and assessment , 2012 .

[11]  George Athanasopoulos,et al.  Multivariate Exponential Smoothing for Forecasting Tourist Arrivals , 2012 .

[12]  A. Sato Impact of the Great East Japan Earthquake on Hotel Industry in Pacific Tohoku Prefectures : From Spatio-Temporal Dependence of Hotel Availability(New Perspectives,Proceedings of the YITP Workshop on Econophysics,Econophysics 2011-The Hitchhiker's Guide to the Economy-) , 2012, 1204.0433.

[13]  Daniel Santamaria,et al.  Forecasting tourist arrivals in Greece and the impact of macroeconomic shocks from the countries of tourists' origin. , 2012 .

[14]  Haiyan Song,et al.  Assessing the Impacts of the Global Economic Crisis and Swine Flu on Inbound Tourism Demand in the United Kingdom , 2012 .

[15]  J. Fourie,et al.  The impact of mega-sport events on tourist arrivals , 2011 .

[16]  Fong-Lin Chu,et al.  A piecewise linear approach to modeling and forecasting demand for Macau tourism. , 2011 .

[17]  Kamran Shahanaghi,et al.  Tourist arrival forecasting by evolutionary fuzzy systems. , 2011 .

[18]  John T. Coshall,et al.  A management orientated approach to combination forecasting of tourism demand , 2011 .

[19]  Gang Li,et al.  Forecasting tourist arrivals using time-varying parameter structural time series models , 2011 .

[20]  Amir F. Atiya,et al.  Combination of long term and short term forecasts, with application to tourism demand forecasting , 2011 .

[21]  Shen Liu,et al.  Beyond point forecasting: evaluation of alternative prediction intervals for tourist arrivals , 2011 .

[22]  Luis A. Gil-Alana,et al.  Persistence in the Short- and Long-Term Tourist Arrivals to Australia , 2011 .

[23]  Felix Chan,et al.  Spectral analysis of seasonality in tourism demand , 2011, Math. Comput. Simul..

[24]  David A. Dickey,et al.  Estimating time series and cross section tourism demand models: Mainland United States to Hawaii data , 2011 .

[25]  Shuang Cang A Non-Linear Tourism Demand Forecast Combination Model , 2011 .

[26]  Gang Li,et al.  Combination forecasts of international tourism demand , 2011 .

[27]  N. Seetaram Use of Dynamic Panel Cointegration Approach to Model International Arrivals to Australia , 2010 .

[28]  B. Seetanah,et al.  Using the Panel Cointegration Approach to Analyse the Determinants of Tourism Demand in South Africa , 2010 .

[29]  Marcos Álvarez-Díaz,et al.  Forecasting British Tourist Arrivals in the Balearic Islands Using Meteorological Variables , 2010 .

[30]  Gang Li,et al.  Tourism Demand Modelling and Forecasting: How Should Demand Be Measured? , 2010 .

[31]  E. Smeral Impacts of the World Recession and Economic Crisis on Tourism: Forecasts and Potential Risks , 2010 .

[32]  K. Greenidge,et al.  Modelling and Forecasting Tourist Flows to Barbados Using Structural Time Series Models , 2010 .

[33]  Cherng G. Ding,et al.  Post-SARS tourist arrival recovery patterns: An analysis based on a catastrophe theory , 2009, Tourism Management.

[34]  Dimitrios D. Thomakos,et al.  A review on singular spectrum analysis for economic and financial time series , 2010 .

[35]  Christina Beneki,et al.  Signal Extraction and Forecasting of the UK Tourism Income Time Series. A Singular Spectrum Analysis Approach , 2012 .

[36]  John T. Coshall,et al.  Combining volatility and smoothing forecasts of UK demand for international tourism , 2009 .

[37]  Saeid Sanei,et al.  The use of noise information for detection of temporomandibular disorder , 2009, Biomed. Signal Process. Control..

[38]  A. Zhigljavsky,et al.  Forecasting European industrial production with singular spectrum analysis , 2009 .

[39]  Rob J Hyndman,et al.  Automatic Time Series Forecasting: The forecast Package for R , 2008 .

[40]  Gang Li,et al.  An Assessment of Combining Tourism Demand Forecasts over Different Time Horizons , 2008 .

[41]  Haiyan Song,et al.  Tourism demand modelling and forecasting—A review of recent research , 2008 .

[42]  Fong-Lin Chu,et al.  A fractionally integrated autoregressive moving average approach to forecasting tourism demand , 2007, Tourism Management.

[43]  Michael McAleer,et al.  Modelling the uncertainty in monthly international tourist arrivals to the Maldives , 2007 .

[44]  Kevin K. F. Wong,et al.  Effects of News Shock on Inbound Tourist Demand Volatility in Korea , 2006 .

[45]  L. A. Gil-Alana,et al.  Modelling international monthly arrivals using seasonal univariate long-memory processes , 2005 .

[46]  Andrea Saayman,et al.  Determinants of Tourist Arrivals in Africa: A Panel Data Regression Analysis , 2005 .

[47]  V. Cho A comparison of three different approaches to tourist arrival forecasting , 2003 .

[48]  J. Elsner Analysis of Time Series Structure: SSA and Related Techniques , 2002 .

[49]  Rob Law,et al.  Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention. , 2002 .

[50]  Rob J Hyndman,et al.  A state space framework for automatic forecasting using exponential smoothing methods , 2002 .

[51]  Tak-Kee Hui,et al.  A study in the seasonal variation of Japanese tourist arrivals in Singapore , 2002 .

[52]  Michael Ghil,et al.  ADVANCED SPECTRAL METHODS FOR CLIMATIC TIME SERIES , 2002 .

[53]  Michael McAleer,et al.  Forecasting tourist arrivals , 2001 .

[54]  K. Greenidge,et al.  Forecasting tourism demand: An STM approach , 2001 .

[55]  Georges A. Darbellay,et al.  Forecasting the short-term demand for electricity: Do neural networks stand a better chance? , 2000 .

[56]  Michael Y. Hu,et al.  Forecasting with artificial neural networks: The state of the art , 1997 .

[57]  P. Perron,et al.  Computation and Analysis of Multiple Structural-Change Models , 1998 .

[58]  Paul Newbold,et al.  Testing the equality of prediction mean squared errors , 1997 .

[59]  Francesco Lisi,et al.  Is a random walk the best exchange rate predictor , 1997 .

[60]  Michael P. Clements,et al.  Multi-Step Estimation For Forecasting , 2009 .

[61]  Ruey S. Tsay,et al.  Comment: Adaptive Forecasting , 1993 .

[62]  P. Phillips,et al.  Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? , 1992 .

[63]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[64]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[65]  Steven C. Wheelwright,et al.  Forecasting methods and applications. , 1979 .

[66]  Michael D. Geurts,et al.  Time Series Analysis: Forecasting and Control , 1977 .