Recent Techniques for the Identification of Piecewise Affine and Hybrid Systems

The problem of piecewise affine identification is addressed by studying four recently proposed techniques for the identification of PWARX/HHARX models, namely a Bayesian procedure, a bounded-error procedure, a clustering-based procedure and a mixed-integer programming procedure. The four techniques are compared on suitably defined one-dimensional examples, which help to highlight the features of the different approaches with respect to classification, noise and tuning parameters. The procedures are also tested on the experimental identification of the electronic component placement process in pick-and-place machines.

[1]  A. Juloski,et al.  A Bayesian approach to identification of hybrid systems , 2004, CDC.

[2]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[3]  A. Bemporad,et al.  Data classification and parameter estimation for the identification of piecewise affine models , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[4]  S. Paoletti IDENTIFICATION OF PIECEWISE AFFINE MODELS , 2004 .

[5]  Eberhard Münz,et al.  Identification of hybrid systems using a priori knowledge , 2002 .

[6]  Jakob Roll Local and Piecewise Affine Approaches to System Identification , 2003 .

[7]  Kristin P. Bennett,et al.  Multicategory Classification by Support Vector Machines , 1999, Comput. Optim. Appl..

[8]  Leo Breiman,et al.  Hinging hyperplanes for regression, classification, and function approximation , 1993, IEEE Trans. Inf. Theory.

[9]  J.-N. Lin,et al.  Canonical piecewise-linear approximations , 1992 .

[10]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[11]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[12]  Antonio Vicino,et al.  Optimal estimation theory for dynamic systems with set membership uncertainty: An overview , 1991, Autom..

[13]  Marc E. Pfetsch,et al.  The maximum feasible subsystem problem and vertex-facet incidences of polyhedra , 2003 .

[14]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[15]  Alberto Bemporad,et al.  Observability and controllability of piecewise affine and hybrid systems , 2000, IEEE Trans. Autom. Control..

[16]  Marco Muselli,et al.  Single-Linkage Clustering for Optimal Classification in Piecewise Affine Regression , 2003, ADHS.

[17]  Kristine L. Bell,et al.  A Tutorial on Particle Filters for Online Nonlinear/NonGaussian Bayesian Tracking , 2007 .

[18]  Alberto Bemporad,et al.  Identification of piecewise affine systems via mixed-integer programming , 2004, Autom..

[19]  Edoardo Amaldi,et al.  The MIN PFS problem and piecewise linear model estimation , 2002, Discret. Appl. Math..

[20]  S. Sastry,et al.  An algebraic geometric approach to the identification of a class of linear hybrid systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[21]  Johannes Schumacher,et al.  An Introduction to Hybrid Dynamical Systems, Springer Lecture Notes in Control and Information Sciences 251 , 1999 .

[22]  Alberto Bemporad,et al.  A Greedy Approach to Identification of Piecewise Affine Models , 2003, HSCC.

[23]  O. Mangasarian,et al.  Multicategory discrimination via linear programming , 1994 .

[24]  O. Mangasarian,et al.  Robust linear programming discrimination of two linearly inseparable sets , 1992 .

[25]  Thomas A. Henzinger,et al.  Hybrid Systems: Computation and Control , 1998, Lecture Notes in Computer Science.

[26]  A. Nerode,et al.  Hybrid Control Systems: An Introductory Discussion to the Special Issue , 1998, IEEE Trans. Autom. Control..

[27]  A. Juloski,et al.  Data-based hybrid modelling of the component placement process in pick-and-place machines , 2004 .

[28]  Manfred Morari,et al.  A clustering technique for the identification of piecewise affine systems , 2001, Autom..

[29]  Bart De Schutter,et al.  Equivalence of hybrid dynamical models , 2001, Autom..