Biooptical characteristics of PSII and PSI in 33 species (13 pigment groups) of marine phytoplankton, and the relevance for pulse‐amplitude‐modulated and fast‐repetition‐rate fluorometry 1

We studied the variability of in vivo absorption coefficients and PSII‐scaled fluorescence excitation (fl‐ex) spectra of high light (HL) and low light (LL) acclimated cultures of 33 phytoplankton species that belonged to 13 different pigment groups (PGs) and 10 different phytoplankton classes. By scaling fl‐ex spectra to the corresponding absorption spectra by matching them in the 540–650 nm range, we obtained estimates for the fraction of total chl a that resided in PSII, the absorption of light by PSII, PSI, and photoprotective carotenoids. The in vivo red peak absorption maxima ranged from 673 to 679 nm, reflecting bonding of chl a to different pigment proteins. A simple approach is presented for quantifying intracellular self‐shading and evaluating the impact of photoacclimation on biooptical characteristics of the different PGs examined. In view of these results, parameters used in the calculation of oxygenic photosynthesis based on pulse‐amplitude‐modulated (PAM) and fast‐repetition‐rate (FRR) fluorometers are discussed, showing that the ratio between light available to PSII and total absorption, essential for the calculation of the oxygen release rate (using the PSII‐scaled fluorescence spectrum as a proxy) was dependent on species and photoacclimation state. Three subgroups of chromophytes exhibited 70%–80%, 60%–80%, and 50%–60% chl a in PSII‐LHCII; the two subgroups of chlorophytes, 70% or 80%; and cyanobacteria, only 12%. In contrast, the mean fraction for chromo‐ and chlorophytes of quanta absorbed by PSII was 73% in LL‐ and 55% in HL‐acclimated cells; thus, the corresponding ratios 0.55 and 0.73 might be used as correction factors adjusting for quanta absorbed by PSII for PAM and FRR measurements.

[1]  C. Taylor,et al.  Primary production of protein: I. Comparison of net cellular carbon and protein synthesis with 14C-derived rate estimates in steady-state cultures of marine phytoplankton , 1987 .

[2]  Esther Garcés,et al.  CHARACTERIZATION OF NW MEDITERRANEAN KARLODINIUM SPP. (DINOPHYCEAE) STRAINS USING MORPHOLOGICAL, MOLECULAR, CHEMICAL, AND PHYSIOLOGICAL METHODOLOGIES 1 , 2006 .

[3]  S. Thoms,et al.  FROM ELECTRON TO BIOMASS: A MECHANISTIC MODEL TO DESCRIBE PHYTOPLANKTON PHOTOSYNTHESIS AND STEADY‐STATE GROWTH RATES 1 , 2006 .

[4]  J. Kromkamp,et al.  The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology , 2003 .

[5]  G. Johnsen,et al.  Light harvesting in bloom-forming marine phytoplankton: species-specificity and photoacclimation , 1996 .

[6]  Milestones in photosynthesis research , 2000 .

[7]  E. Granéli,et al.  Chemical composition and alkaline phosphatase activity of nutrient-saturated and P-deficient cells of four marine dinoflagellates , 1984 .

[8]  E. Gantt RECENT CONTRIBUTIONS IN PHYCOBILIPROTEINS AND PHYCOBILISOMES , 1977 .

[9]  M. Vernet,et al.  Comparison of chlorophyll far-red and rea fluorescence excitation spectra with photo-synthetic oxygen action spectra for photo-system II in algae , 1988 .

[10]  G. F. Humphrey,et al.  New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton , 1975 .

[11]  Francis T. Haxo,et al.  PHOTOSYNTHETIC ACTION SPECTRUM OF THE COCCOLITHOPHORID, EMILIANIA HUXLEYI (HAPTOPHYCEAE): 19′ HEXANOYLOXYFUCOXANTHIN AS ANTENNA PIGMENT 1, 2 , 1985 .

[12]  G. Johnsen,et al.  RATE OF O2 PRODUCTION DERIVED FROM PULSE‐AMPLITUDE‐MODULATED FLUORESCENCE: TESTING THREE BIOOPTICAL APPROACHES AGAINST MEASURED O2‐PRODUCTION RATE 1 , 2008, Journal of phycology.

[13]  Dale A. Kiefer,et al.  In-vivo absorption properties of algal pigments , 1990, Defense, Security, and Sensing.

[14]  B. Prézelin,et al.  Isolation of membrane bound light-harvesting-complexes from the dinoflagellates Heterocapsa pygmaea and Prorocentrum minimum , 1995, Photosynthesis Research.

[15]  B. G. Mitchell,et al.  Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter technique , 1990, Defense, Security, and Sensing.

[16]  R. Hiller,et al.  Light-Harvesting Systems in Chlorophyll c-Containing Algae , 2003 .

[17]  W. W. Parson,et al.  Photosynthetic membranes and their light-harvesting antennas , 2003 .

[18]  D. Bhattacharya,et al.  Tertiary endosymbiosis driven genome evolution in dinoflagellate algae. , 2005, Molecular biology and evolution.

[19]  S. Sathyendranath,et al.  DIFFERENCES BETWEEN IN VIVO ABSORPTION AND FLUORESCENCE EXCITATION SPECTRA IN NATURAL SAMPLES OF PHYTOPLANKTON , 1998 .

[20]  G. Johnsen,et al.  Modeling of light-dependent algal photosynthesis and growth: experiments with the Barents sea diatoms Thalassiosira nordenskioldii and Chaetoceros furcellatus , 1991 .

[21]  Anthony W. D. Larkum,et al.  Light-Harvesting Systems in Algae , 2003 .

[22]  J. Kirk A THEORETICAL ANALYSIS OF THE CONTRIBUTION OF ALGAL CELLS TO THE ATTENUATION OF LIGHT WITHIN NATURAL WATERS I. GENERAL TREATMENT OF SUSPENSIONS OF PIGMENTED CELLS , 1975 .

[23]  Norman B. Nelson,et al.  Calibration of an integrating sphere for determining the absorption coefficient of scattering suspensions. , 1993, Applied optics.

[24]  Oscar Schofield,et al.  Influence of zeaxanthin on quantum yield of photosynthesis of Synechococcus clone WH7803 (DC2) , 1989 .

[25]  J. Myers,et al.  Light Harvesting in Anacystis nidulans Studied in Pigment Mutants. , 1980, Plant physiology.

[26]  M. Zapata Recent advances in pigment analysis as applied to picophytoplankton , 2005 .

[27]  N. Baker,et al.  Photosynthesis: energy transduction: a practical approach. , 1985 .

[28]  John F. Allen,et al.  Thylakoid protein phosphorylation, state 1-state 2 transitions, and photosystem stoichiometry adjustment: redox control at multiple levels of gene expression , 1995 .

[29]  R. Reynolds,et al.  Advances in Understanding Phytoplankton Fluorescence and Photosynthesis , 1992 .

[30]  G. Johnsen,et al.  PIGMENTS OF BATHYCOCCUS PRASINOS (PRASINOPHYCEAE): METHODOLOGICAL AND CHEMOSYSTEMATIC IMPLICATIONS1, 2 , 1995 .

[31]  Paul G. Falkowski,et al.  Photoacclimation of Light Harvesting Systems in Eukaryotic Algae , 2003 .

[32]  Jill Merry,et al.  Reference materials for monitoring nutrients in sea water environment , 1995 .

[33]  R. Bidigare,et al.  EVIDENCE A PHOTOPROTECTIVE FOR SECONDARY CAROTENOIDS OF SNOW ALGAE 1 , 1993 .

[34]  B. Prézelin,et al.  Fluorescence excitation spectra and light utilization in two red tide dinoflagellates , 1997 .

[35]  P. Falkowski,et al.  Use of active fluorescence to estimate phytoplankton photosynthesis in situ , 1993 .

[36]  A. Emerson K. P. Schmidt--Herpetologist, Ecologist, Zoogeographer. , 1958, Science.

[37]  Warren L. Butler,et al.  Energy Distribution in the Photochemical Apparatus of Photosynthesis , 1978 .

[38]  L. R. Blinks,et al.  PHOTOSYNTHETIC ACTION SPECTRA OF MARINE ALGAE , 1950, The Journal of general physiology.

[39]  William K. W. Li,et al.  Changes in the In Vivo Absorption and Fluorescence Excitation Spectra with Growth Irradiance in Three Species of Phytoplankton , 2001 .

[40]  T. G. Owens Energy Transformation and Fluorescence in Photosynthesis , 1991 .

[41]  Dale A. Kiefer,et al.  Chlorophyll α specific absorption and fluorescence excitation spectra for light-limited phytoplankton , 1988 .

[42]  O. Holm‐Hansen,et al.  Photoadaptation in Antarctic phytopfankton: variations in growth rate, chemical composition and P versus I curves , 1986 .

[43]  Mary Jane Perry,et al.  Instrumental considerations for deriving spectral photosynthetic absorption coefficients from total phytoplankton absorption , 1994, Other Conferences.

[44]  U. Kopf,et al.  2,7-Bis(diethylamino)phenazoxonium chloride as a quantum counter for emission measurements between 240 and 700 nm , 1984 .

[45]  G. Finazzi,et al.  State transitions, cyclic and linear electron transport and photophosphorylation in Chlamydomonas reinhardtii. , 1999, Biochimica et biophysica acta.

[46]  G. Johnsen,et al.  BIO‐OPTICAL CHARACTERISTICS AND PHOTOADAPTIVE RESPONSES IN THE TOXIC AND BLOOM‐FORMING DINOFLAGELLATES GYRODINIUM AUREOLUM, GYMNODINIUM GALATHEANUM, AND TWO STRAINS OF PROROCENTRUM MINIMUM 1 , 1993 .

[47]  G. Johnsen,et al.  In vivo absorption characteristics in 10 classes of bloom-forming phytoplankton: taxonomic characteristics and responses to photoadaptation by means of discriminant and HPLC analysis , 1994 .

[48]  J. Raven,et al.  Oxygen Consumption: Photorespiration and Chlororespiration , 2003 .

[49]  R. Guillard,et al.  Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. , 1962, Canadian journal of microbiology.

[50]  Mohammad Yunus,et al.  Probing photosynthesis : mechanisms, regulation, and adaptation , 2000 .

[51]  C. Mullineaux,et al.  Fluorescence induction transients indicate dissociation of Photosystem II from the phycobilisome during the State-2 transition in the cyanobacterium Synechococcus 6301 , 1988 .

[52]  B. Prézelin,et al.  CHROMATIC REGULATION OF QUANTUM YIELDS FOR PHOTOSYSTEM II CHARGE SEPARATION, OXYGEN EVOLUTION, AND CARBON FIXATION IN HETEROCAPSA PYGMAEA (PYRROPHYTA) 1 , 1993 .

[53]  Hugh L. MacIntyre,et al.  Evaluation of biophysical and optical determinations of light absorption by photosystem II in phytoplankton , 2004 .

[54]  B. Prézelin,et al.  WAVELENGTH DEPENDENCY OF THE MAXIMUM QUANTUM YIELD OF CARBON FIXATION FOR TWO RED TIDE DINOFLAGELLATES, HETEROCAPSA PYGMAEA AND PROROCENTRUM MINIMUM (PYRROPHYTA): IMPLICATIONS FOR MEASURING PHOTOSYNTHETIC RATES 1 , 1996 .

[55]  G. Johnsen,et al.  Monitoring of harmful algal blooms along the Norwegian Coast using bio-optical methods , 2000 .

[56]  R. Geider,et al.  The effect of water motion on short-term rates of photosynthesis by marine phytoplankton. , 2000, Trends in plant science.

[57]  J. Garrido,et al.  Chlorophyll c Pigments: Current Status , 2006 .

[58]  G. Johnsen,et al.  Photoacclimation in phytoplankton: implications for biomass estimates, pigment functionality and chemotaxonomy , 2006 .

[59]  H. Maske,et al.  Quantitative in vivo absorption spectra of phytoplankton: Detrital absorption and comparison with fluorescence excitation spectra' , 1987 .

[60]  G. Johnsen,et al.  TEMPERATURE EFFECTS ON MICROALGAL PHOTOSYNTHESIS‐LIGHT RESPONSES MEASURED BY O2 PRODUCTION, PULSE‐AMPLITUDE‐MODULATED FLUORESCENCE, AND 14C ASSIMILATION 1 , 2008, Journal of phycology.

[61]  C. Howe,et al.  Molecular Aspects of Light-harvesting Processes in Algae , 1997 .

[62]  W. Bilger,et al.  Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer , 2004, Photosynthesis Research.

[63]  Zbigniew S. Kolber,et al.  Variations in Chlorophyll Fluorescence Yields in Phytoplankton in the World Oceans , 1995 .

[64]  A. Bricaud,et al.  Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton , 1981 .

[65]  S. Jeffrey,et al.  Chlorophyllase distribution in ten classes of phytoplankton: a problem for chlorophyll analysis , 1987 .

[66]  J. Barrett,et al.  Light-harvesting processes in algae , 1983 .

[67]  A. Ley,et al.  Effects of Chromatic Adaptation on the Photochemical Apparatus of Photosynthesis in Porphyridium cruentum. , 1980, Plant physiology.

[68]  Geir Johnsen,et al.  Pigment composition, spectral characterization and photosynthetic parameters in Chryso-chromulma polylepis , 1992 .

[69]  T. G. Owens,et al.  A femtosecond study of electronic state dynamics of fucoxanthin and implications for photosynthetic carotenoid-to-chlorophyll energy transfer mechanisms , 1991 .

[70]  S. W. Jeffrey,et al.  Introduction to marine phytoplankton and their pigment signatures , 1997 .

[71]  Z. Finkel Light absorption and size scaling of light‐limited metabolism in marine diatoms , 2001 .

[72]  J. Briantais,et al.  The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence , 1989 .

[73]  J. Raven,et al.  Adaptation, Acclimation and Regulation in Algal Photosynthesis , 2003 .

[74]  H. Scheer An Overview of Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications , 2006 .

[75]  Paul G. Falkowski,et al.  The Evolution of Modern Eukaryotic Phytoplankton , 2004, Science.

[76]  B. Prézelin,et al.  Chromoprotein- and pigment-dependent modeling of spectral light absorption in two dinoflagellates, Prorocentrum minimum and Heterocapsa pygmaea , 1994 .

[77]  Charles F. Delwiche,et al.  Tracing the Thread of Plastid Diversity through the Tapestry of Life , 1999, The American Naturalist.

[78]  K. Rowan,et al.  Photosynthetic Pigments of Algae , 2011 .