Analysis of Boundary Layer Influence on Effective Shear Modulus of 3-1 Longitudinally Porous Elastic Solid

[1]  I Sevostianov,et al.  Impact of the porous microstructure on the overall elastic properties of the osteonal cortical bone. , 2000, Journal of biomechanics.

[2]  T. Kanit,et al.  On the Homogenization of 2D Porous Material with Determination of RVE , 2016 .

[3]  F. Lebon,et al.  Effective elastic shear stiffness of a periodic fibrous composite with non-uniform imperfect contact between the matrix and the fibers , 2014 .

[4]  Keen Ian Chan,et al.  A non-destructive experimental-cum-numerical methodology for the characterization of 3D-printed materials—polycarbonate-acrylonitrile butadiene styrene (PC-ABS) , 2019, Mechanics of Materials.

[5]  M. Martorelli,et al.  The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer , 2015 .

[6]  P. Laugier,et al.  Derivation of the mesoscopic elasticity tensor of cortical bone from quantitative impedance images at the micron scale , 2008 .

[7]  J. B. Castillero,et al.  Effective Electromechanical Properties of 622 Piezoelectric Medium With Unidirectional Cylindrical Holes , 2013 .

[8]  R A Brand,et al.  Micromechanically based poroelastic modeling of fluid flow in Haversian bone. , 2003, Journal of biomechanical engineering.

[9]  W. Parnell,et al.  The influence of mesoscale porosity on cortical bone anisotropy. Investigations via asymptotic homogenization , 2009, Journal of The Royal Society Interface.

[10]  J. Bravo-Castillero,et al.  Transport properties in fibrous elastic rhombic composite with imperfect contact condition , 2011 .

[11]  J. Bravo-Castillero,et al.  Analytical formulae for electromechanical effective properties of 3–1 longitudinally porous piezoelectric materials , 2009 .

[12]  S. Naili,et al.  Analytical methods to determine the effective mesoscopic and macroscopic elastic properties of cortical bone , 2011, Biomechanics and Modeling in Mechanobiology.

[13]  Somnath Ghosh,et al.  Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model , 1996 .

[14]  L. Preziosi,et al.  Three scales asymptotic homogenization and its application to layered hierarchical hard tissues , 2018 .

[15]  J. Otero,et al.  Semi-analytical method for computing effective properties in elastic composite under imperfect contact , 2013 .

[16]  Somnath Ghosh,et al.  A multi-level computational model for multi-scale damage analysis in composite and porous materials , 2001 .

[18]  Marco Lo Cascio,et al.  Virtual element method for computational homogenization of composite and heterogeneous materials , 2020 .

[19]  N. Kikuchi,et al.  A comparison of homogenization and standard mechanics analyses for periodic porous composites , 1992 .

[20]  P. Trovalusci,et al.  Homogenization of Random Porous Materials With Low-Order Virtual Elements , 2019, ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg.

[21]  P. Ociepka,et al.  The influence of printing parameters on selected mechanical properties of FDM/FFF 3D-printed parts , 2017 .

[22]  Peter Wriggers,et al.  Computational homogenization of polycrystalline materials with the Virtual Element Method , 2019, Computer Methods in Applied Mechanics and Engineering.

[23]  N. Ramakrishnan,et al.  Effective elastic moduli of porous solids , 1990 .

[24]  C. Capelli,et al.  3D printing assisted finite element analysis for optimising the manufacturing parameters of a lumbar fusion cage , 2019, Materials & Design.