medium, provided the original work is properly cited. Long-Term Earth-Moon

Tides and Earth-Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows  Earth E s rotation rate, increases obliquity, lunar orbit semi-major axis and eccentricity, and decreases lunar inclination. Tidal and core-mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi-major axis. Here we integrate the Earth-Moon system backwards for 4.5 Ga with orbital dynamics and explicit ocean tide models that are “high-level” (i.e., not idealized). To account for uncertain plate tectonic histories, we employ Monte Carlo simulations, with tidal energy dissipation rates (normalized relative to astronomical forcing parameters) randomly selected from ocean tide simulations with modern ocean basin geometry and with 55, 116, and 252 Ma reconstructed basin paleogeometries. The normalized dissipation rates depend upon basin geometry and  Earth E s rotation rate. Faster Earth rotation generally yields lower normalized dissipation rates. The Monte Carlo results provide a spread of possible early values for the Earth-Moon system parameters. Of consequence for ocean circulation and climate, absolute (un-normalized) ocean tidal energy dissipation rates on the early Earth may have exceeded  today E s rate due to a closer Moon. Prior to  E 3 Ga, evolution of inclination and eccentricity is dominated by tidal and core-mantle boundary dissipation within the Moon, which yield high lunar orbit inclinations in the early Earth-Moon system. A drawback for our results is that the semi-major axis does not collapse to near-zero values at 4.5 Ga, as indicated by most lunar formation models. Additional processes, missing from our current efforts, are discussed as time scales, the rate at which tidal energy is being dissipated is affected by the geometrical configuration of the continents, the length of day, and mean sea level, which is affected by plate tectonic forces and the presence or absence of large ice caps. The faster rotating Earth of the past was less efficient at dissipating energy and the present placement of the continents enhances some tides due to resonances. In addition, tidal dissipation in the Moon slows the orbit evolution by absorbing energy from the orbit and there was a time in the distant past when the  Moon s E tidal dissipation was large. The evolution of the Earth-Moon system is complex and uncertain,

[1]  B. Cornuelle,et al.  Long‐Term Earth‐Moon Evolution With High‐Level Orbit and Ocean Tide Models , 2021, Journal of geophysical research. Planets.

[2]  R. Tyler On the Tidal History and Future of the Earth–Moon Orbital System , 2021 .

[3]  W. Folkner,et al.  The JPL Planetary and Lunar Ephemerides DE440 and DE441 , 2021 .

[4]  R. Müller,et al.  Extending full-plate tectonic models into deep time: Linking the Neoproterozoic and the Phanerozoic , 2020, Earth-Science Reviews.

[5]  J. Green,et al.  Weak tides during Cryogenian glaciations , 2020, Nature Communications.

[6]  P. Ahlberg,et al.  A key environmental driver of osteichthyan evolution and the fish-tetrapod transition? , 2020, Proceedings of the Royal Society A.

[7]  S. Lock,et al.  Geochemical Constraints on the Origin of the Moon and Preservation of Ancient Terrestrial Heterogeneities , 2020, Space Science Reviews.

[8]  B. Marty,et al.  Earth’s water may have been inherited from material similar to enstatite chondrite meteorites , 2020, Science.

[9]  D. Breuer,et al.  A long-lived magma ocean on a young Moon , 2020, Science Advances.

[10]  J. Wisdom,et al.  Vertical angular momentum constraint on lunar formation and orbital history , 2020, Proceedings of the National Academy of Sciences.

[11]  M. Way,et al.  Tides on Other Earths: Implications for Exoplanet and Palaeo‐Tidal Simulations , 2020, Geophysical Research Letters.

[12]  M. Brown,et al.  Plate Tectonics and the Archean Earth , 2020, Annual Review of Earth and Planetary Sciences.

[13]  B. Wing,et al.  Limited Archaean continental emergence reflected in an early Archaean 18O-enriched ocean , 2020, Nature Geoscience.

[14]  J. Green,et al.  Back to the future II: tidal evolution of four supercontinent scenarios , 2019, Earth System Dynamics.

[15]  M. Ćuk,et al.  Early Dynamics of the Lunar Core , 2019, Journal of Geophysical Research: Planets.

[16]  T. W. Murphy,et al.  Lunar Laser Ranging: a tool for general relativity, lunar geophysics and Earth science , 2019, Journal of Geodesy.

[17]  M. Way,et al.  Consequences of Tidal Dissipation in a Putative Venusian Ocean , 2019, The Astrophysical Journal.

[18]  H. Lau,et al.  Anelasticity from seismic to tidal timescales: Theory and observations , 2019, Earth and Planetary Science Letters.

[19]  E. Joseph Metzger,et al.  A Primer on Global Internal Tide and Internal Gravity Wave Continuum Modeling in HYCOM and MITgcm , 2018, New Frontiers in Operational Oceanography.

[20]  M. Schindelegger,et al.  Can We Model the Effect of Observed Sea Level Rise on Tides? , 2018, Journal of Geophysical Research: Oceans.

[21]  A. Malinverno,et al.  Proterozoic Milankovitch cycles and the history of the solar system , 2018, Proceedings of the National Academy of Sciences.

[22]  J. Green,et al.  Is There a Tectonically Driven Supertidal Cycle? , 2018 .

[23]  J. Laskar,et al.  Long-term cyclicities in Phanerozoic sea-level sedimentary record and their potential drivers , 2018, Global and Planetary Change.

[24]  Sarah T. Stewart,et al.  The Origin of the Moon Within a Terrestrial Synestia , 2018, 1802.10223.

[25]  Kevin Heng,et al.  The nature of the TRAPPIST-1 exoplanets. , 2018, 1802.01377.

[26]  J. Korenaga Estimating the formation age distribution of continental crust by unmixing zircon ages , 2018 .

[27]  T. Kleine,et al.  Tungsten isotopes and the origin of the Moon , 2017 .

[28]  M. Way,et al.  Habitable Climate Scenarios for Proxima Centauri b with a Dynamic Ocean. , 2017, Astrobiology.

[29]  R. Barnes Tidal locking of habitable exoplanets , 2017, Celestial Mechanics and Dynamical Astronomy.

[30]  B. Weiss,et al.  A two-billion-year history for the lunar dynamo , 2017, Science Advances.

[31]  F. Forget,et al.  Modeling climate diversity, tidal dynamics and the fate of volatiles on TRAPPIST-1 planets , 2017, 1707.06927.

[32]  S. Peters,et al.  Plate tectonic regulation of global marine animal diversity , 2017, Proceedings of the National Academy of Sciences.

[33]  M. Huber,et al.  Explicitly modelled deep-time tidal dissipation and its implication for Lunar history , 2017 .

[34]  Miguel B. Azarevich,et al.  Lunar recession encoded in tidal rhythmites: a selective overview with examples from Argentina , 2017, Geo-Marine Letters.

[35]  Z. Martinec,et al.  Time-domain modeling of global ocean tides generated by the full lunisolar potential , 2017, Ocean Dynamics.

[36]  P. Boehnke,et al.  Early formation of the Moon 4.51 billion years ago , 2017, Science Advances.

[37]  M. Ćuk,et al.  Tidal evolution of the Moon from a high-obliquity, high-angular-momentum Earth , 2016, Nature.

[38]  C. Mayer,et al.  A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry , 2016 .

[39]  M. Way,et al.  Was Venus the first habitable world of our solar system? , 2016, Geophysical research letters.

[40]  James G. Williams,et al.  Secular tidal changes in lunar orbit and Earth rotation , 2016, Celestial Mechanics and Dynamical Astronomy.

[41]  R. Müller,et al.  Ocean Basin Evolution and Global-Scale Plate Reorganization Events Since Pangea Breakup , 2016 .

[42]  D. Rubincam Tidal Friction in the Earth-Moon System and Laplace Planes: Darwin Redux , 2016 .

[43]  D. Waltham Milankovitch Period Uncertainties and Their Impact On Cyclostratigraphy , 2015 .

[44]  J. Tromp,et al.  A normal mode treatment of semi-diurnal body tides on an aspherical, rotating and anelastic Earth , 2015 .

[45]  F. Macdonald,et al.  A Cryogenian chronology: Two long-lasting synchronous Neoproterozoic glaciations , 2015 .

[46]  James G. Williams,et al.  Tides on the Moon: Theory and determination of dissipation , 2015 .

[47]  M. Tamisiea,et al.  Dynamic Adjustment of the Ocean Circulation to Self-Attraction and Loading Effects , 2015 .

[48]  D. Canfield,et al.  Orbital forcing of climate 1.4 billion years ago , 2015, Proceedings of the National Academy of Sciences.

[49]  D. Stevenson,et al.  Analysis of a Precambrian resonance‐stabilized day length , 2014, 1502.01421.

[50]  Joshua N. Winn,et al.  The Occurrence and Architecture of Exoplanetary Systems , 2014, 1410.4199.

[51]  R. Müller,et al.  A Suite of Early Eocene (~55 Ma) Climate Model Boundary Conditions , 2014 .

[52]  David E. Smith,et al.  Lunar interior properties from the GRAIL mission , 2014 .

[53]  Dorian S. Abbot,et al.  STRONG DEPENDENCE OF THE INNER EDGE OF THE HABITABLE ZONE ON PLANETARY ROTATION RATE , 2014, 1404.4992.

[54]  D. Evans Reconstructing pre-Pangean supercontinents , 2013 .

[55]  R. Eanes,et al.  Constraints on Energy Dissipation in the Earth's Body Tide from Satellite Tracking and Altimetry , 2013 .

[56]  B. Arbic,et al.  On the Resonance and Shelf/Open-Ocean Coupling of the Global Diurnal Tides , 2013 .

[57]  J. Murphy,et al.  Origins of the supercontinent cycle , 2013 .

[58]  M. Huber,et al.  Tidal dissipation in the early Eocene and implications for ocean mixing , 2013 .

[59]  S. Seager Exoplanet Habitability , 2013, Science.

[60]  J. Mitrovica,et al.  An enigma in estimates of the Earth’s dynamic ellipticity , 2012 .

[61]  L. Jia,et al.  Load Love numbers and Green's functions for elastic Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust 2.0 , 2012, Comput. Geosci..

[62]  R. Carlson,et al.  Formation age and metamorphic history of the Nuvvuagittuq Greenstone Belt , 2012 .

[63]  V. Davydov,et al.  Quantitative radiometric and biostratigraphic calibration of the Pennsylvanian–Early Permian (Cisuralian) time scale and pan-Euramerican chronostratigraphic correlation , 2012 .

[64]  N. Schaeffer Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations , 2012, ArXiv.

[65]  M. Laneuville,et al.  An impact-driven dynamo for the early Moon , 2011, Nature.

[66]  R. Carlson,et al.  Chronological evidence that the Moon is either young or did not have a global magma ocean , 2011, Nature.

[67]  J. Lissauer,et al.  Obliquity variations of a moonless Earth , 2011 .

[68]  A. Fienga,et al.  La2010: a new orbital solution for the long-term motion of the Earth , 2011, 1103.1084.

[69]  J. Green Ocean tides and resonance , 2010 .

[70]  P. Link,et al.  Maximum depositional age and provenance of the Uinta Mountain Group and Big Cottonwood Formation, northern Utah: Paleogeography of rifting western Laurentia , 2010 .

[71]  Mathieu Dumberry,et al.  Inner core–mantle gravitational locking and the super-rotation of the inner core , 2010 .

[72]  C. Garrett,et al.  A coupled oscillator model of shelf and ocean tides , 2010 .

[73]  C. Garrett,et al.  On tidal resonance in the global ocean and the back‐effect of coastal tides upon open‐ocean tides , 2009 .

[74]  Griffiths,et al.  Modeling of Polar Ocean Tides at the Last Glacial Maximum: Amplification, Sensitivity, and Climatological Implications , 2009 .

[75]  Malte Müller A Large Spectrum of Free Oscillations of the World Ocean Including the Full Ocean Loading and Self-attraction Effects , 2008 .

[76]  D. Macayeal,et al.  On the factors behind large Labrador Sea tides during the last glacial cycle and the potential implications for Heinrich events , 2008 .

[77]  Walter R. Roest,et al.  Age, spreading rates, and spreading asymmetry of the world's ocean crust , 2008 .

[78]  R. Müller,et al.  Long-Term Sea-Level Fluctuations Driven by Ocean Basin Dynamics , 2008, Science.

[79]  W. Griffin,et al.  The Puncoviscana Formation of northwest Argentina: U-Pb geochronology of detrital zircons and Rb-Sr metamorphic ages and their bearing on its stratigraphic age, sediment provenance and tectonic setting , 2008 .

[80]  C. Garrett,et al.  On the resonance and influence of the tides in Ungava Bay and Hudson Strait , 2007 .

[81]  M. Müller The free oscillations of the world ocean in the period range 8 to 165 hours including the full loading effect , 2007 .

[82]  A. Correia The core–mantle friction effect on the secular spin evolution of terrestrial planets , 2006 .

[83]  S. Mojzsis,et al.  Eoarchean crust is not that rare: Widespread pre-3750 Ma supracrustal rocks from the Nuvvuagittuq supracrustal belt, northern Québec. , 2006 .

[84]  J. Laskar,et al.  A long-term numerical solution for the insolation quantities of the Earth , 2004 .

[85]  R. Hallberg,et al.  The accuracy of surface elevations in forward global barotropic and baroclinic tide models , 2004 .

[86]  E. Poliakow Numerical modelling of the paleotidal evolution of the Earth-Moon System , 2004, Proceedings of the International Astronomical Union.

[87]  Chris W. Hughes,et al.  Parameterization of ocean self‐attraction and loading in numerical models of the ocean circulation , 2004 .

[88]  Gary D. Egbert,et al.  Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum , 2004 .

[89]  R. Ray,et al.  Semi‐diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry , 2003 .

[90]  J. Laskar,et al.  Climate friction and the Earth's obliquity , 2003 .

[91]  G. Egbert,et al.  Efficient Inverse Modeling of Barotropic Ocean Tides , 2002 .

[92]  J. T. Ratcliff,et al.  Lunar rotational dissipation in solid body and molten core , 2001 .

[93]  Gary D. Egbert,et al.  Estimates of M2 Tidal Energy Dissipation from TOPEX/Poseidon Altimeter Data , 2001 .

[94]  Erik Asphaug,et al.  Origin of the Moon in a giant impact near the end of the Earth's formation , 2001, Nature.

[95]  L. St. Laurent,et al.  Parameterizing tidal dissipation over rough topography , 2001 .

[96]  H. Brumsack,et al.  Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years , 2001, Nature.

[97]  W. M. Kaula,et al.  Theory of Satellite Geodesy: Applications of Satellites to Geodesy , 2000 .

[98]  G. D. Egbert,et al.  Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data , 2000, Nature.

[99]  George E. Williams,et al.  Geological constraints on the Precambrian history of Earth's rotation and the Moon's orbit , 2000 .

[100]  H. Legros,et al.  Core rotational dynamics and geological events , 1999, Science.

[101]  C. Sonett,et al.  Calculating lunar retreat rates using tidal rhythmites , 1999 .

[102]  R. Ray,et al.  Lunar orbital evolution: A synthesis of recent results , 1999 .

[103]  W. Munk,et al.  Abyssal recipes II: energetics of tidal and wind mixing , 1998 .

[104]  C. Sonett,et al.  Neoproterozoic Earth‐Moon dynamics: Rework of the 900 Ma Big Cottonwood Canyon tidal laminae , 1998 .

[105]  B. Buffett Gravitational oscillations in the length of day , 1996 .

[106]  P. Bender,et al.  Lunar Laser Ranging: A Continuing Legacy of the Apollo Program , 1994, Science.

[107]  J. Laskar,et al.  The chaotic obliquity of the planets , 1993, Nature.

[108]  J. Laskar,et al.  Stabilization of the Earth's obliquity by the Moon , 1993, Nature.

[109]  S. Stein,et al.  A model for the global variation in oceanic depth and heat flow with lithospheric age , 1992, Nature.

[110]  Michelle Chapront-Touze,et al.  Lunar Tables and Programs from 4000 B.C. to A.D. 8000 , 1991 .

[111]  H. Melosh,et al.  The origin of the moon and the single-impact hypothesis III. , 1991, Icarus.

[112]  M. Ross,et al.  Evolution of the lunar orbit with temperature- and frequency-dependent dissipation , 1989 .

[113]  G. Schubert,et al.  Crustal volumes of the continents and of oceanic and continental submarine plateaus , 1989 .

[114]  G. Williams Late Precambrian tidal rhythmites in South Australia and the history of the Earth's rotation , 1989, Journal of the Geological Society.

[115]  K. Zahnle,et al.  A constant daylength during the Precambrian era? , 1987, Precambrian research.

[116]  B. Efron Better Bootstrap Confidence Intervals , 1987 .

[117]  K. Zahnle,et al.  Lunar nodal tide and distance to the Moon during the Precambrian , 1986, Nature.

[118]  G. Platzman Normal Modes of the World Ocean. Part IV: Synthesis of Diurnal and Semidiurnal Tides , 1984 .

[119]  K. Lambeck On the Rotation of the Earth , 1983, Nature.

[120]  K. S. Hansen Secular effects of oceanic tidal dissipation on the Moon's orbit and the Earth's rotation , 1982 .

[121]  D. Webb Tides and the evolution of the Earth—Moon system , 1982 .

[122]  R. A. Heath Estimates of the resonant period and Q in the semi-diurnal tidal band in the North Atlantic and Pacific Oceans , 1981 .

[123]  John M. Wahr,et al.  Body tides on an elliptical, rotating, elastic and oceanless earth , 1981 .

[124]  J. Wahr,et al.  A diurnal resonance in the ocean tide and in the Earth's load response due to the resonant free ‘core nutation’ , 1981 .

[125]  C. F. Yoder,et al.  Tidal acceleration of the Moon , 1978 .

[126]  Kurt Lambeck,et al.  Tidal dissipation in the oceans: astronomical, geophysical and oceanographic consequences , 1977, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[127]  W. Ward Past Orientation of the Lunar Spin Axis , 1975, Science.

[128]  William K. Hartmann,et al.  Satellite-Sized Planetesimals and Lunar Origin , 1975 .

[129]  M. Hendershott,et al.  The Effects of Solid Earth Deformation on Global Ocean Tides , 1972 .

[130]  D. L. Anderson,et al.  The Origin of the Moon , 1972, Nature.

[131]  C. Garrett Tidal Resonance in the Bay of Fundy and Gulf of Maine , 1972, Nature.

[132]  W. Farrell Deformation of the Earth by surface loads , 1972 .

[133]  C. Wunsch Bermuda sea level in relation to tides, weather, and baroclinic fluctuations , 1972 .

[134]  W. Munk,et al.  The age of the tide and the “Q” of the oceans , 1971 .

[135]  H. Gerstenkorn The earliest past of the Earth-Moon system , 1969 .

[136]  W. Munk Once Again-Tidal Friction , 1968 .

[137]  P. Goldreich,et al.  The history of the lunar orbit , 1966 .

[138]  J. Wilson,et al.  Did the Atlantic Close and then Re-Open? , 1966, Nature.

[139]  G. MacDonald ORIGIN OF THE MOON: DYNAMICAL CONSIDERATIONS , 1965 .

[140]  W. M. Kaula Tidal dissipation by solid friction and the resulting orbital evolution , 1964 .

[141]  G. Taylor Tidal Friction in the Irish Sea , 1919 .

[142]  J. Piper Dominant Lid Tectonics behaviour of continental lithosphere in Precambrian times: Palaeomagnetism confirms prolonged quasi-integrity and absence of supercontinent cycles , 2018 .

[143]  J. Tromp,et al.  Anelasticity across seismic to tidal timescales: a self-consistent approach , 2017 .

[144]  W. Behr,et al.  Initiation and Evolution of Plate Tectonics on Earth : Theories and Observations , 2013 .

[145]  F. A. Dahleo The Passive Influence of the Oceans upon the Rotation of the Earth , 2009 .

[146]  Malte Müller Synthesis of forced oscillations, Part I: Tidal dynamics and the influence of the loading and self-attraction effect , 2008 .

[147]  D. Macayeal,et al.  Palaeoclimate: Ocean tides and Heinrich events , 2004, Nature.

[148]  R. Ray Ocean self‐attraction and loading in numerical tidal models , 1998 .

[149]  M. Barley,et al.  Emplacement of a large igneous province as a possible cause of banded iron formation 2.45 billion years ago , 1997, Nature.

[150]  J. Sündermann,et al.  Dissipation of Tidal Energy, Paleotides, and Evolution of the Earth–Moon System , 1996 .

[151]  B. Kagan,et al.  A stochastic model of the Earth-Moon tidal evolution accounting for cyclic variations of resonant properties of the ocean: an asymptotic solution , 1994 .

[152]  D. Cartwright Theory of ocean tides with application to altimetry , 1993 .

[153]  J. Kasting,et al.  Habitable zones around main sequence stars. , 1993, Icarus.

[154]  G. Williams Tidal Rhythmites: Key to the History of the Earth's Rotation and the Lunar Orbit , 1990 .

[155]  M. Ooe Effects of configuration and bathymetry of the oceans on the tidal dissipation of the Earth's rotation , 1989 .

[156]  J. Chapront,et al.  ELP 2000-85: a semi-analytical lunar ephemeris adequate for historical times , 1988 .

[157]  D E Cartwright,et al.  Oceanic tides , 1977 .

[158]  D. Webb A model of continental-shelf resonances , 1976 .

[159]  H. Alfvén,et al.  Evolution of the earth-moon system. , 1974 .

[160]  H. Jeffreys Tidal Friction , 1973, Nature.

[161]  H. Gerstenkorn On the controversy over the effect of tidal friction upon the history of the earth-moon system , 1967 .

[162]  H. L The Tides and Kindred Phenomena in the Solar System , 1911, Nature.