System-Level Design Considerations for Carbon Nanotube Electromechanical Resonators

Despite an evermore complete plethora of complex domain-specific semiempirical models, no succinct recipe for large-scale carbon nanotube electromechanical systems design has been formulated. To combine the benefits of these highly sensitive miniaturized mechanical sensors with the vast functionalities available in electronics, we identify a reduced key parameter set of carbon nanotube properties, nanoelectromechanical system design, and operation that steers the sensor’s performance towards system applications, based on open- and closed-loop topologies. Suspended single-walled carbon nanotubes are reviewed in terms of their electromechanical properties with the objective of evaluating orders of magnitude of the electrical actuation and detection mechanisms. Open-loop time-averaging and 1ω or 2ω mixing methods are completed by a new 4ω actuation and detection technique. A discussion on their extension to closed-loop topologies and system applications concludes the analysis, covering signal-to-noise ratio, and the capability to spectrally isolate the motional information from parasitical feedthrough by contemporary electronic read-out techniques.

[1]  P. J. Burke An RF circuit model for carbon nanotubes , 2003 .

[2]  Marc Pastre,et al.  On-chip mass sensing at the physical limits of nanoelectromechanical systems , 2013, 5th IEEE International Workshop on Advances in Sensors and Interfaces IWASI.

[3]  M. Radosavljevic,et al.  Drain voltage scaling in carbon nanotube transistors , 2003, cond-mat/0305570.

[4]  T. D. Yuzvinsky,et al.  Ultrahigh frequency nanotube resonators. , 2006, Physical review letters.

[5]  Guang-Yu Guo,et al.  Electromechanical responses of single-walled carbon nanotubes: Interplay between the strain-induced energy-gap opening and the pinning of the Fermi level , 2005 .

[6]  Christofer Hierold,et al.  Analytic modeling and piezoresistive detection theory of acoustic resonances in carbon nanotubes , 2010, 10th IEEE International Conference on Nanotechnology.

[7]  Jean-Christophe Charlier,et al.  Electronic and transport properties of nanotubes , 2007 .

[8]  S. Datta,et al.  Performance projections for ballistic carbon nanotube field-effect transistors , 2002 .

[9]  Leonard,et al.  Role of fermi-level pinning in nanotube schottky diodes , 2000, Physical review letters.

[10]  Narayana R Aluru,et al.  Static and Dynamic Analysis of Carbon Nanotube-Based Switches , 2004 .

[11]  Jing Guo,et al.  Analysis of Strain Effects in Ballistic Carbon Nanotube FETs , 2007, IEEE Transactions on Electron Devices.

[12]  Michael L. Roukes,et al.  Dynamic range of nanotube- and nanowire-based electromechanical systems , 2005 .

[13]  Zhen Yao,et al.  1/f noise in carbon nanotubes , 2001 .

[14]  Jae-Young Choi,et al.  Direct growth of semiconducting single-walled carbon nanotube array. , 2009, Journal of the American Chemical Society.

[15]  Hugen Yan,et al.  Direct measurement of strain-induced changes in the band structure of carbon nanotubes. , 2008, Physical review letters.

[16]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[17]  P. L. McEuen,et al.  Electrical transport measurements on single-walled carbon nanotubes , 1999 .

[18]  Jing Guo,et al.  CARBON NANOTUBE FIELD-EFFECT TRANSISTORS , 2006 .

[19]  M. Lundstrom,et al.  Self-Aligned Ballistic Molecular Transistors and Electrically Parallel Nanotube Arrays , 2004, cond-mat/0406494.

[20]  Alex Kleiner,et al.  Band gaps of primary metallic carbon nanotubes , 2000, cond-mat/0007244.

[21]  Harold G. Craighead,et al.  Measurement of nanomechanical resonant structures in single-crystal silicon , 1998 .

[22]  M. Fuhrer,et al.  Extraordinary Mobility in Semiconducting Carbon Nanotubes , 2004 .

[23]  M. Pastre,et al.  Wideband low-noise RF front-end for CNT-NEMS sensors , 2012, Proceedings of the 19th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2012.

[24]  Stefan Rotter,et al.  Comment on ``Dynamic range of nanotube- and nanowire-based electromechanical systems'' [Appl. Phys. , 2005 .

[25]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[26]  Deron A. Walters,et al.  Elastic strain of freely suspended single-wall carbon nanotube ropes , 1999 .

[27]  Kong,et al.  Intrinsic electrical properties of individual single-walled carbon nanotubes with small band gaps , 2000, Physical review letters.

[28]  Peter Burke,et al.  AC performance of nanoelectronics: towards a ballistic THz nanotube transistor , 2004 .

[29]  Phaedon Avouris,et al.  Ambipolar-to-Unipolar Conversion of Carbon Nanotube Transistors by Gate Structure Engineering , 2004 .

[30]  Jing Guo,et al.  High-field quasiballistic transport in short carbon nanotubes. , 2003, Physical review letters.

[31]  C. Hierold,et al.  Nano-electromechanical displacement sensing based on single-walled carbon nanotubes. , 2006, Nano letters.

[32]  P. McEuen,et al.  Mixing at 50GHz using a single-walled carbon nanotube transistor , 2005 .

[33]  P. McEuen,et al.  Single-walled carbon nanotube electronics , 2002 .

[34]  E. J. Mele,et al.  Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes , 1997 .

[35]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[36]  P. McEuen,et al.  A tunable carbon nanotube electromechanical oscillator , 2004, Nature.

[37]  C. Hierold,et al.  Platform for strainable, tem-compatible, mems-embedded carbon nanotube transistors , 2011, 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems.

[38]  Li Ding,et al.  Resonant modelling of two types of tunable carbon nanotube electromechanical oscillators , 2010 .

[39]  Phaedon Avouris,et al.  The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. , 2005, Nano letters.

[40]  J. Maultzsch,et al.  Tight-binding description of graphene , 2002 .

[41]  Ron Dagani,et al.  CARBON-BASED ELECTRONICS , 1999 .

[42]  T. Nussbaumer,et al.  Electrochemical carbon nanotube field-effect transistor , 2000, cond-mat/0009171.

[43]  M. Roukes,et al.  Noise processes in nanomechanical resonators , 2002 .

[44]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[45]  Ji-Yong Park,et al.  Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. , 2005, Physical review letters.

[46]  Libao An,et al.  On Contact Resistance of Carbon Nanotubes , 2013 .

[47]  Marc Pastre,et al.  A self-regulating oscillator for sensor operation of nanoelectromechanical systems , 2013, 2013 IEEE 11th International New Circuits and Systems Conference (NEWCAS).

[48]  M. Radosavljevic,et al.  Tunneling versus thermionic emission in one-dimensional semiconductors. , 2004, Physical review letters.

[49]  Won Chel Choi,et al.  Synthesis of bandgap-controlled semiconducting single-walled carbon nanotubes. , 2010, ACS nano.

[50]  Mohammad I. Younis,et al.  Nonlinear Dynamics of Electrically Actuated Carbon Nanotube Resonators , 2010 .

[51]  G. Steele,et al.  Carbon nanotubes as ultrahigh quality factor mechanical resonators. , 2009, Nano letters.

[52]  J. Chaste,et al.  Single carbon nanotube transistor at GHz frequency. , 2008, Nano letters.

[53]  Alan H. Windle,et al.  Carbon Nanotubes with Catalyst Controlled Chiral Angle , 2010 .

[54]  Yang,et al.  Electronic structure of deformed carbon nanotubes , 2000, Physical review letters.

[55]  S. Wind,et al.  Field-modulated carrier transport in carbon nanotube transistors. , 2002, Physical review letters.

[56]  P. Avouris,et al.  Externally Assembled Gate-All-Around Carbon Nanotube Field-Effect Transistor , 2008, IEEE Electron Device Letters.