Choosing the Best Volatility Models: The Model Confidence Set Approach

This paper applies the model confidence set (MCS) procedure of Hansen, Lunde and Nason (2003) to a set of volatility models. An MCS is analogous to the confidence interval of a parameter in the sense that it contains the best forecasting model with a certain probability. The key to the MCS is that it acknowledges the limitations of the information in the data. The empirical exercise is based on 55 volatility models and the MCS includes about a third of these when evaluated by mean square error, whereas the MCS contains only a VGARCH model when mean absolute deviation criterion is used. We conduct a simulation study which shows that the MCS captures the superior models across a range of significance levels. When we benchmark the MCS relative to a Bonferroni bound, the latter delivers inferior performance.

[1]  P. Hansen,et al.  A Forecast Comparison of Volatility Models: Does Anything Beat a Garch(1,1)? , 2004 .

[2]  Peter Reinhard Hansen,et al.  Model Confidence Sets for Forecasting Models , 2005 .

[3]  S. Satchell,et al.  Forecasting Volatility in Financial Markets : A Review , 2004 .

[4]  K. West,et al.  Asymptotic Inference about Predictive Ability , 1996 .

[5]  P. Hansen,et al.  A Forecast Comparison of Volatility Models: Does Anything Beat a Garch(1,1)? , 2004 .

[6]  Maria Elvira Mancino,et al.  Fourier series method for measurement of multivariate volatilities , 2002, Finance Stochastics.

[7]  E. Barucci,et al.  On measuring volatility of diffusion processes with high frequency data , 2002 .

[8]  Kai Li,et al.  Spiders: Where are the Bugs , 2000 .

[9]  Joel Hasbrouck,et al.  Intraday Price Formation in Us Equity Index Markets , 2000 .

[10]  G. Schwert Why Does Stock Market Volatility Change Over Time? , 1988 .

[11]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[12]  Jurgen A. Doornik,et al.  Statistical algorithms for models in state space using SsfPack 2.2 , 1999 .

[13]  W. Härdle,et al.  Bootstrap Methods for Time Series , 2003 .

[14]  S. Johansen STATISTICAL ANALYSIS OF COINTEGRATION VECTORS , 1988 .

[15]  Anil K. Bera,et al.  A Class of Nonlinear ARCH Models , 1992 .

[16]  R. Baillie,et al.  Fractionally integrated generalized autoregressive conditional heteroskedasticity , 1996 .

[17]  Sastry G. Pantula,et al.  Testing for Unit Roots in Time Series Data , 1989, Econometric Theory.

[18]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[19]  Stephen L Taylor,et al.  Modelling Financial Time Series , 1987 .

[20]  Geoffrey F. Loudon,et al.  An empirical analysis of alternative parametric ARCH models , 2000 .

[21]  Jin-Chuan Duan,et al.  Augmented GARCH (p,q) process and its diffusion limit , 1997 .

[22]  Enrique Sentana Quadratic Arch Models , 1995 .

[23]  Peter Reinhard Hansen A Test for Superior Predictive Ability , 2005 .

[24]  William H. Press,et al.  Numerical recipes in C , 2002 .

[25]  H. White,et al.  A Reality Check for Data Snooping , 2000 .

[26]  Stephen L Taylor,et al.  Modelling Financial Time Series , 1987 .

[27]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[28]  Peter Reinhard Hansen,et al.  Regression Analysis with Many Specifications: A Bootstrap Method for Robust Inference , 2003 .

[29]  Peter Reinhard Hansen,et al.  Asymptotic Tests of Composite Hypotheses , 2003 .

[30]  Todd E. Clark,et al.  Tests of Equal Forecast Accuracy and Encompassing for Nested Models , 1999 .

[31]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[32]  Peter Reinhard Hansen,et al.  An Unbiased and Powerful Test for Superior Predictive Ability , 2001 .

[33]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[34]  William B. White,et al.  All in the Family , 2005 .

[35]  J. Zakoian Threshold heteroskedastic models , 1994 .

[36]  N. Shephard,et al.  Estimating quadratic variation using realized variance , 2002 .

[37]  P. Hansen A Test for Superior Predictive Ability , 2005 .

[38]  Peter Reinhard Hansen,et al.  Consistent Preordering with an Estimated Criterion Function, with an Application to the Evaluation and Comparison of Volatility Models , 2003 .

[39]  Turalay Kenc,et al.  Ox: An Object-Oriented Matrix Language , 1997 .

[40]  Neil Shephard,et al.  Estimating quadratic variation using realised volatility , 2001 .

[41]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[42]  H. Iemoto Modelling the persistence of conditional variances , 1986 .