Derivation of effective macroscopic Stokes–Cahn–Hilliard equations for periodic immiscible flows in porous media

Using thermodynamic and variational principles we examine a basic phase field model for a mixture of two incompressible fluids in strongly perforated domains. With the help of the multiple scale method with drift and our recently introduced splitting strategy for Ginzburg–Landau/Cahn–Hilliard-type equations (Schmuck et al 2012 Proc. R. Soc. A 468 3705–24), we rigorously derive an effective macroscopic phase field formulation under the assumption of periodic flow and a sufficiently large Peclet number. As for classical convection–diffusion problems, we obtain systematically diffusion–dispersion relations (including Taylor–Aris-dispersion). Our results also provide a convenient computational framework to macroscopically track interfaces in porous media. In view of the well-known versatility of phase field models, our study proposes a promising model for many engineering and scientific applications such as multiphase flows in porous media, microfluidics, and fuel cells.

[1]  Jacob Rubinstein,et al.  Dispersion and convection in periodic porous media , 1986 .

[2]  Alain Bourgeat,et al.  Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow , 1996 .

[3]  H. Brenner,et al.  Multiphase Flow in Porous Media , 1988 .

[4]  F. Lin,et al.  Nonparabolic dissipative systems modeling the flow of liquid crystals , 1995 .

[5]  M. Yoneya,et al.  Physics of Liquid Crystals , 2014 .

[6]  Jie Shen,et al.  A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method , 2003 .

[7]  S. Whitaker,et al.  Transport in ordered and disordered porous media: volume-averaged equations, closure problems, and comparison with experiment , 1993 .

[8]  Stig Larsson,et al.  THE CAHN-HILLIARD EQUATION , 2007 .

[9]  Serafim Kalliadasis,et al.  Spectral methods for the equations of classical density-functional theory: relaxation dynamics of microscopic films. , 2012, The Journal of chemical physics.

[10]  Paul Papatzacos,et al.  Macroscopic Two-phase Flow in Porous Media Assuming the Diffuse-interface Model at Pore Level , 2002 .

[11]  Grégoire Allaire,et al.  Two-scale expansion with drift approach to the Taylor dispersion for reactive transport through porous media , 2010 .

[12]  Markus Schmuck,et al.  First error bounds for the porous media approximation of the Poisson‐Nernst‐Planck equations , 2012 .

[13]  Markus Schmuck,et al.  Upscaled phase-field models for interfacial dynamics in strongly heterogeneous domains , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  Christof Eck,et al.  On a phase-field model for electrowetting , 2009 .

[15]  R. Aris A - * On the Dispersion of A Solute in A Fluid Flowing Through A Tube , 1999 .

[16]  H. Tchelepi,et al.  Multi-scale finite-volume method for elliptic problems in subsurface flow simulation , 2003 .

[17]  F. Otto,et al.  Thermodynamically driven incompressible fluid mixtures , 1997 .

[18]  Hsiang-Wei Lu,et al.  A diffuse-interface model for electrowetting drops in a Hele-Shaw cell , 2005, Journal of Fluid Mechanics.

[19]  P. Donato,et al.  An introduction to homogenization , 2000 .

[20]  D. Kwak,et al.  Energetic variational approach in complex fluids: Maximum dissipation principle , 2009 .

[21]  BEN SCHWEIZER,et al.  Homogenization of Degenerate Two-Phase Flow Equations with Oil Trapping , 2008, SIAM J. Math. Anal..

[22]  Franck Boyer,et al.  A theoretical and numerical model for the study of incompressible mixture flows , 2002 .

[23]  Jean-Louis Auriault,et al.  Effective Diffusion Coefficient: From Homogenization to Experiment , 1997 .

[24]  Martin Z. Bazant,et al.  Homogenization of the Poisson-Nernst-Planck equations for Ion Transport in Charged Porous Media , 2012, SIAM J. Appl. Math..

[25]  R. Showalter Monotone operators in Banach space and nonlinear partial differential equations , 1996 .

[26]  J. Lowengrub,et al.  Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  Michael Struwe,et al.  Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems , 1990 .

[28]  H. Abels Double Obstacle Limit for a Navier-Stokes/Cahn-Hilliard System , 2011 .

[29]  Jie Shen,et al.  An Energetic Variational Formulation with Phase Field Methods for Interfacial Dynamics of Complex Fluids: Advantages and Challenges , 2005 .

[30]  Andrey L. Piatnitski,et al.  Homogenization of a Nonlinear Convection‐Diffusion Equation with Rapidly Oscillating Coefficients and Strong Convection , 2005 .

[31]  Farad Kamyabi,et al.  Multiphase Flow in Porous Media , 2014 .

[32]  John H. Cushman,et al.  Macroscale Thermodynamics and the Chemical Potential for Swelling Porous Media , 1997 .

[33]  A Model for Multiphase and Multicomponent Flow in Porous Media, Built on the Diffuse-Interface Assumption , 2010 .

[34]  Charles-Michel Marle,et al.  On macroscopic equations governing multiphase flow with diffusion and chemical reactions in porous media , 1982 .

[35]  Reinhold Pregla,et al.  Analysis of Periodic Structures , 2008 .

[36]  R. E. Craine,et al.  Continuum Theories of Mixtures: Applications , 1976 .

[37]  Serafim Kalliadasis,et al.  Disorder-induced hysteresis and nonlocality of contact line motion in chemically heterogeneous microchannels , 2012 .

[38]  Markus Schmuck,et al.  New porous medium Poisson-Nernst-Planck equations for strongly oscillating electric potentials , 2012, 1209.6618.

[39]  Serafim Kalliadasis,et al.  The contact line behaviour of solid-liquid-gas diffuse-interface models , 2013, 1310.1255.

[40]  R. Probstein Physicochemical Hydrodynamics: An Introduction , 1989 .

[41]  C. Eck,et al.  ON A PHASE-FIELD MODEL FOR ELECTROWETTING , 2009 .

[42]  U. Hornung Homogenization and porous media , 1996 .

[43]  E. Saar Multiscale Methods , 2006, astro-ph/0612370.

[44]  Stephen Whitaker,et al.  Dispersion in pulsed systems—II: Theoretical developments for passive dispersion in porous media , 1983 .

[45]  S. Whitaker Flow in porous media I: A theoretical derivation of Darcy's law , 1986 .

[46]  Chiang C. Mei,et al.  Method of homogenization applied to dispersion in porous media , 1992 .

[47]  Keith Promislow,et al.  PEM Fuel Cells: A Mathematical Overview , 2009, SIAM J. Appl. Math..

[48]  Noel J. Walkington,et al.  Digital Object Identifier (DOI) 10.1007/s002050100158 An Eulerian Description of Fluids Containing Visco-Elastic Particles , 2022 .

[49]  Amy Novick-Cohen,et al.  Chapter 4 The Cahn–Hilliard Equation , 2008 .

[50]  G. Taylor Dispersion of soluble matter in solvent flowing slowly through a tube , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[51]  H. Brenner,et al.  Dispersion resulting from flow through spatially periodic porous media , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[52]  Markus Schmuck,et al.  Homogenization of a catalyst layer model for periodically distributed pore geometries in PEM fuel cells , 2012, 1204.6698.

[53]  G. Fredrickson The theory of polymer dynamics , 1996 .

[54]  Serafim Kalliadasis,et al.  On the moving contact line singularity: Asymptotics of a diffuse-interface model , 2012, The European physical journal. E, Soft matter.

[55]  D. Bedeaux,et al.  Local equilibrium of the Gibbs interface in two-phase systems , 2012 .