An extension of the divide-and-conquer method for a class of symmetric block-tridiagonal eigenproblems
暂无分享,去创建一个
[1] J. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .
[2] Peter Arbenz,et al. Parallel divide and conquer algorithms for the symmetric tridiagonal eigenproblem , 1994 .
[3] Jeffery D. Rutter. A Serial Implementation of Cuppen''s Divide and Conquer Algorithm , 1991 .
[4] Peter Arbenz,et al. Divide and conquer algorithms for the bandsymmetric eigenvalue problem , 1992, Parallel Computing.
[5] J. Pople,et al. Approximate Self‐Consistent Molecular‐Orbital Theory. V. Intermediate Neglect of Differential Overlap , 1967 .
[6] Ren-Cang Li. Solving secular equations stably and efficiently , 1993 .
[7] W. Gander,et al. Restricted rank modification of the symmetric eigenvalue problem: Theoretical considerations , 1988 .
[8] Jack Dongarra,et al. LAPACK Users' Guide, 3rd ed. , 1999 .
[9] J. Pople,et al. Approximate Self‐Consistent Molecular Orbital Theory. III. CNDO Results for AB2 and AB3 Systems , 1966 .
[10] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[11] J. Barlow. Error analysis of update methods for the symmetric eigenvalue problem , 1993 .
[12] Jeffery D. Rutter. LAPACK Working Note 69: A Serial Implementation of Cuppen''s Divide and Conquer Algorithm for the Symmetric Eigenvalue Problem , 1994 .
[13] J. Pople,et al. Approximate Self‐Consistent Molecular Orbital Theory. II. Calculations with Complete Neglect of Differential Overlap , 1965 .
[14] Jack J. Dongarra,et al. A fully parallel algorithm for the symmetric eigenvalue problem , 1985, PPSC.
[15] D. Sorensen,et al. On the orthogonality of eigenvectors computed by divide-and-conquer techniques , 1991 .
[16] David L. Beveridge,et al. Approximate molecular orbital theory , 1970 .
[17] G. Golub,et al. On the spectral decomposition of Hermitian matrices modified by low rank perturbations , 1988 .
[18] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[19] Christoph W. Ueberhuber,et al. A Low-Complexity Divide-and-Conquer Method for Computing Eigenvalues and Eigenvectors of Symmetric Band Matrices , 2001 .
[20] S. Eisenstat,et al. A Stable and Efficient Algorithm for the Rank-One Modification of the Symmetric Eigenproblem , 1994, SIAM J. Matrix Anal. Appl..
[21] Jack J. Dongarra,et al. A Parallel Divide and Conquer Algorithm for the Symmetric Eigenvalue Problem on Distributed Memory Architectures , 1999, SIAM J. Sci. Comput..
[22] J. Bunch,et al. Rank-one modification of the symmetric eigenproblem , 1978 .
[23] Ed Anderson,et al. LAPACK Users' Guide , 1995 .
[24] J. Pople,et al. Approximate Self-Consistent Molecular Orbital Theory. I. Invariant Procedures , 1965 .
[25] Stanley C. Eisenstat,et al. A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem , 1995, SIAM J. Matrix Anal. Appl..