Inversion of seismic and geodetic data for the major element chemistry and temperature of the Earth's mantle

[1] We jointly invert global seismic traveltime data, mean mass, and mean moment of inertia for Earth's mantle composition and thermal state using a stochastic sampling algorithm. The chemical composition of the silicate Earth is modeled within the system CaO-FeO-MgO-Al2O3-SiO2. Given these parameters we calculate the stable mineralogy and its elastic properties and density as a function of pressure and temperature using Gibbs free energy minimization. Bulk seismic P and S wave velocity profiles (VP, VS) are computed from Voigt-Reuss-Hill averaging, while anelastic contributions to VP and VS are calculated assuming shear attenuation to be linearly varying with depth. From these radial profiles, seismic traveltimes, mean mass, and mean moment of inertia are calculated, providing a range of compositions and temperatures that fit data within uncertainties. Specifically, we find an upper mantle composition that is depleted in CaO and Al2O3 relative to canonical values inferred for the upper mantle from analysis of mantle xenoliths. The lower mantle in contrast is found to be enriched in FeO and depleted in SiO2, with a Mg/Si ratio of ∼1.2 and a Mg# of ∼0.83, resulting in a bulk silicate Earth composition that is unmatched by any of the common chondrites. The mantle geotherm is found to be superadiabatic for depths >1200 km, while lower mantle temperatures reach ∼2400°C at 2500 km depth. The presence of a chemical transition between upper and lower mantle is further suggested in the depth range 650–750 km.

[1]  J. Korenaga Urey ratio and the structure and evolution of Earth's mantle , 2008 .

[2]  L. Stixrude,et al.  Influence of phase transformations on lateral heterogeneity and dynamics in Earth's mantle , 2007 .

[3]  J. Trampert,et al.  Chemical versus thermal heterogeneity in the lower mantle: The most likely role of anelasticity , 2007 .

[4]  J. Bass,et al.  On the bulk composition of the lower mantle: Predictions and limitations from generalized inversion of radial seismic profiles , 2007 .

[5]  J. Matas,et al.  On the anelastic contribution to the temperature dependence of lower mantle seismic velocities , 2007 .

[6]  G. Masters,et al.  Spherically symmetric attenuation within the Earth from normal mode data , 2007 .

[7]  J. Korenaga,et al.  Chemical composition of Earth's primitive mantle and its variance: 1. Method and results , 2007 .

[8]  J. Maclennan,et al.  Joint inversion of seismic and gravity data for lunar composition and thermal state , 2007 .

[9]  J. Connolly,et al.  Constraining the Composition and Thermal State of Mars , 2007 .

[10]  N. Olsen,et al.  Constraining the composition and thermal state of the mantle beneath Europe from inversion of long‐period electromagnetic sounding data , 2006 .

[11]  N. Olsen,et al.  Constraining the composition and thermal state of the moon from an inversion of electromagnetic lunar day-side transfer functions , 2006 .

[12]  B. Wood,et al.  Accretion of the Earth and segregation of its core , 2006, Nature.

[13]  H. Annersten,et al.  Inferring upper-mantle temperatures from seismic and geochemical constraints: Implications for Kaapvaal craton , 2006 .

[14]  M. Wysession,et al.  QLM9: A new radial quality factor (Qμ) model for the lower mantle , 2006 .

[15]  A. Oganov,et al.  In situ observations of phase transition between perovskite and CaIrO3-type phase in MgSiO3 and pyrolitic mantle composition , 2005 .

[16]  Lars Stixrude,et al.  Thermodynamics of mantle minerals – I. Physical properties , 2005 .

[17]  James A. D. Connolly,et al.  Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation , 2005 .

[18]  Domenico Giardini,et al.  Is a pyrolitic adiabatic mantle compatible with seismic data , 2005 .

[19]  L. Stixrude,et al.  Mineralogy and elasticity of the oceanic upper mantle: Origin of the low‐velocity zone , 2005 .

[20]  J. Bass,et al.  Lower mantle composition and temperature from mineral physics and thermodynamic modelling , 2005 .

[21]  Y. Ricard,et al.  Synthetic Tomographic Images of Slabs from Mineral Physics , 2005 .

[22]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[23]  Joseph S. Resovsky,et al.  Probabilistic Tomography Maps Chemical Heterogeneities Throughout the Lower Mantle , 2004, Science.

[24]  F. D. Stacey,et al.  High pressure equations of state with applications to the lower mantle and core , 2004 .

[25]  J. Trampert,et al.  Towards a lower mantle reference temperature and composition , 2004 .

[26]  T. Burbine,et al.  Determining the possible building blocks of the Earth and Mars , 2004 .

[27]  V. Salters,et al.  Composition of the depleted mantle , 2003 .

[28]  T. Shankland,et al.  Correction to “Laboratory‐based electrical conductivity in the Earth's mantle” , 2003 .

[29]  W. Benz,et al.  Evidence for Collisional Erosion of the Earth , 2003 .

[30]  R. Cohen,et al.  Constraints on lower mantle composition from molecular dynamics simulations of MgSiO3 perovskite , 2002 .

[31]  J. Gerald,et al.  Grain-size-sensitive seismic wave attenuation in polycrystalline olivine , 2002 .

[32]  J. Connolly,et al.  Metamorphic controls on seismic velocity of subducted oceanic crust at 100–250 km depth , 2002 .

[33]  M. Sambridge,et al.  Monte Carlo analysis of inverse problems , 2002 .

[34]  Kevin Righter,et al.  Determining the composition of the Earth , 2002, Nature.

[35]  D. L. Anderson The Case for Irreversible Chemical Stratification of the Mantle , 2002 .

[36]  B. Wood,et al.  The Earth's mantle , 2001, Nature.

[37]  Bernard Valette,et al.  Mean radius, mass, and inertia for reference Earth models , 2001 .

[38]  J. Chambers Making More Terrestrial Planets , 2001 .

[39]  Pierre Vacher,et al.  Shallow mantle temperatures under Europe from P and S wave tomography , 2000 .

[40]  S. Weidenschilling,et al.  Formation of Planetesimals and Accretion of the Terrestrial Planets , 2000 .

[41]  K. Lodders An Oxygen Isotope Mixing Model for the Accretion and Composition of Rocky Planets , 2000 .

[42]  G. D. Price,et al.  The composition and geotherm of the lower mantle: constraints from the elasticity of silicate perovskite , 2000 .

[43]  D. Dobson,et al.  The electrical conductivity of the lower mantle phase magnesiowustite at high temperatures and pressures , 2000 .

[44]  Lars Stixrude,et al.  Earth's Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale , 2000 .

[45]  R. Hilst,et al.  Compositional stratification in the deep mantle , 1999, Science.

[46]  M. Bosch Lithologic tomography: From plural geophysical data to lithology estimation , 1999 .

[47]  W. McDonough,et al.  Chapter 4. MINERALOGY AND COMPOSITION OF THE UPPER MANTLE , 1998 .

[48]  I. Jackson Elasticity, composition and temperature of the Earth’s lower mantle: a reappraisal , 1998 .

[49]  Klaus Mosegaard,et al.  Resolution analysis of general inverse problems through inverse Monte Carlo sampling , 1998 .

[50]  E. Engdahl,et al.  Global teleseismic earthquake relocation with improved travel times and procedures for depth determination , 1998, Bulletin of the Seismological Society of America.

[51]  M. Isshiki,et al.  Iron partitioning in a pyrolite mantle and the nature of the 410-km seismic discontinuity , 1998, Nature.

[52]  Gabi Laske,et al.  CRUST 5.1: A global crustal model at 5° × 5° , 1998 .

[53]  W. McDonough,et al.  Mineralogy and composition of the upper mantle , 1998 .

[54]  O. Fabrichnaya The assessment of thermodynamic parameters for solid phases in the Fe-Mg-O and Fe-Mg-Si-O systems , 1998 .

[55]  E. R. Engdahl,et al.  Evidence for deep mantle circulation from global tomography , 1997, Nature.

[56]  B. Kennett,et al.  How to reconcile body-wave and normal-mode reference earth models , 1996 .

[57]  G. Ekström,et al.  A radial model of anelasticity consistent with long-period surface-wave attenuation , 1996 .

[58]  Albrecht W. Hofmann,et al.  The chemical composition of the Earth , 1995 .

[59]  M. Javoy The integral enstatite chondrite model of the earth , 1995 .

[60]  Albert Tarantola,et al.  Monte Carlo sampling of solutions to inverse problems , 1995 .

[61]  E. R. Engdahl,et al.  Constraints on seismic velocities in the Earth from traveltimes , 1995 .

[62]  A. Zerr,et al.  Constraints on the melting temperature of the lower mantle from high-pressure experiments on MgO and magnesioüstite , 1994, Nature.

[63]  G. Wetherill,et al.  Provenance of the terrestrial planets. , 1994, Geochimica et cosmochimica acta.

[64]  Stephan V. Sobolev,et al.  Modeling of mineralogical composition, density and elastic wave velocities in anhydrous magmatic rocks , 1994 .

[65]  J. Poirier Light elements in the Earth's outer core: A critical review , 1994 .

[66]  T. Irifune Absence of an aluminous phase in the upper part of the Earth's lower mantle , 1994, Nature.

[67]  O. Fabrichnaya,et al.  Constitution of the Moon: 1. Assessment of thermodynamic properties and reliability of phase relation calculations in the FeOMgOAl2O3SiO2 system , 1994 .

[68]  A. Zerr,et al.  Melting of (Mg, Fe)SiO3-Perovskite to 625 Kilobars: Indication of a High Melting Temperature in the Lower Mantle , 1993, Science.

[69]  S. Karato,et al.  Importance of anelasticity in the interpretation of seismic tomography , 1993 .

[70]  L. Stixrude,et al.  Petrology, elasticity, and composition of the mantle transition zone , 1992 .

[71]  E. Jarosewich,et al.  Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses , 1990 .

[72]  S. Karato,et al.  Defect microdynamics in minerals and solid state mechanisms of seismic wave attenuation and velocity dispersion in the mantle , 1990 .

[73]  E. Ito,et al.  Postspinel transformations in the system Mg2SiO4‐Fe2SiO4 and some geophysical implications , 1989 .

[74]  S. Hart,et al.  In search of a bulk-Earth composition , 1986 .

[75]  K. Nickel,et al.  CaAl ratio and composition of the Earth's upper mantle , 1985 .

[76]  Don L. Anderson,et al.  Mineralogy and composition of the upper mantle , 1984 .

[77]  A. Tarantola,et al.  Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion (Paper 1R1855) , 1982 .

[78]  A. Tarantola,et al.  Inverse problems = Quest for information , 1982 .

[79]  J. M. Brown,et al.  Thermodynamic parameters in the Earth as determined from seismic profiles , 1981 .

[80]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[81]  D. Anderson,et al.  A model of dislocation-controlled rheology for the mantle , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[82]  S. Taylor Refractory and moderately volatile element abundances in the earth, moon and meteorites. , 1980 .

[83]  G. Dreibus,et al.  THE ABUNDANCES OF MAJOR, MINOR, AND TRACE ELEMENTS IN THE EARTH'S MANTLE AS DERIVED FROM PRIMITIVE ULTRAMAFIC NODULES. , 1979 .

[84]  R. S. Hart,et al.  Attenuation models of the earth , 1978 .

[85]  A. Hall Composition and Petrology of the Earth's Mantle , 1977, Mineralogical Magazine.

[86]  D. L. Anderson,et al.  Importance of Physical Dispersion in Surface Wave and Free Oscillation Problems: Review (Paper 6R0680) , 1977 .

[87]  A. Ringwood Composition and petrology of the earth's mantle , 1975 .

[88]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[89]  B. Mason Composition of the Earth , 1966, Nature.

[90]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[91]  F. Birch Elasticity and Constitution of the Earth's Interior , 1952 .

[92]  W. H. Ramsey On the Nature of the Earth's Core , 1949 .

[93]  H. S. Washington The chemical composition of the earth , 1925 .

[94]  W.,et al.  Absorption Band Q Model for the Earth , 2022 .