The KL estimator for the inverse Gaussian regression model
暂无分享,去创建一个
Zakariya Yahya Algamal | Kayode Ayinde | B. M. Golam Kibria | Adewale F. Lukman | Z. Algamal | A. Lukman | K. Ayinde | B. G. Kibria
[1] M. Amin,et al. Two-parameter estimator for the inverse Gaussian regression model , 2020, Commun. Stat. Simul. Comput..
[2] Arthur E. Hoerl,et al. Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.
[3] Robert L. Mason,et al. Statistical Design and Analysis of Experiments , 2003 .
[4] B. M. Golam Kibria,et al. Journal of Modern Applied Statistical Methods Some Ridge Regression Estimators and Their Performances Some Ridge Regression Estimators and Their Performances , 2022 .
[5] Ali El Hefnawy,et al. A Combined Nonlinear Programming Model and Kibria Method for Choosing Ridge Parameter Regression , 2014, Commun. Stat. Simul. Comput..
[6] Muhammad Amin,et al. Performance of some new Liu parameters for the linear regression model , 2020, Communications in Statistics - Theory and Methods.
[7] B. M. Kibria,et al. Performance of Some New Ridge Regression Estimators , 2003 .
[8] A MODIFIED TWO-PARAMETER ESTIMATOR IN LINEAR REGRESSION , 2014 .
[9] G. Ducharme. Goodness-of-fit tests for the inverse Gaussian and related distributions , 2001 .
[10] Amal Saki Malehi,et al. Statistical models for the analysis of skewed healthcare cost data: a simulation study , 2015, Health Economics Review.
[11] Z. Algamal,et al. A new two-parameter estimator for the inverse Gaussian regression model with application in chemometrics , 2019 .
[12] Z. Algamal. Performance of ridge estimator in inverse Gaussian regression model , 2019 .
[13] B. Segerstedt. On ordinary ridge regression in generalized linear models , 1992 .
[14] Muhammad Amin,et al. A new Liu-type estimator for the Inverse Gaussian Regression Model , 2020 .
[15] A. Akbar,et al. Diagnostics via partial residual plots in inverse Gaussian regression , 2020 .
[16] Xinfeng Chang,et al. A New Two-Parameter Estimator in Linear Regression , 2010 .
[17] A. Lukman,et al. A Modified New Two-Parameter Estimator in a Linear Regression Model , 2019, Modelling and Simulation in Engineering.
[18] Selahattin Kaçıranlar,et al. A new biased estimator based on ridge estimation , 2008 .
[19] J. Hardin,et al. Generalized Linear Models and Extensions , 2001 .
[20] Muhammad Amin,et al. New shrinkage parameters for the inverse Gaussian Liu regression , 2020, Communications in Statistics - Theory and Methods.
[21] Efficiency of an almost unbiased two-parameter estimator in linear regression model , 2013 .
[22] An unbiased estimator with prior information , 2020 .
[23] Boris Yu. Lemeshko,et al. Inverse Gaussian Model and Its Applications in Reliability and Survival Analysis , 2010 .
[24] E. D. Rest,et al. Statistical Theory and Methodology in Science and Engineering , 1963 .
[25] Shakeel Ahmad,et al. Another proposal about the new two-parameter estimator for linear regression model with correlated regressors , 2020, Commun. Stat. Simul. Comput..
[26] A. Lukman,et al. Modified ridge‐type estimator to combat multicollinearity: Application to chemical data , 2019, Journal of Chemometrics.
[27] A. Lukman,et al. A New Ridge-Type Estimator for the Linear Regression Model: Simulations and Applications , 2020, Scientifica.
[28] A. Lukman,et al. Review and classications of the ridge parameter estimation techniques , 2017 .
[29] Kejian Liu. Using Liu-Type Estimator to Combat Collinearity , 2003 .
[30] Yasin Asar,et al. New Shrinkage Parameters for the Liu-type Logistic Estimators , 2016, Commun. Stat. Simul. Comput..
[31] Fikri Akdeniz,et al. On the almost unbiased generalized liu estimator and unbiased estimation of the bias and mse , 1995 .
[32] R. Allen,et al. Statistical Confluence Analysis by means of Complete Regression Systems , 1935 .
[33] Liu Kejian,et al. A new class of blased estimate in linear regression , 1993 .