The KL estimator for the inverse Gaussian regression model

Multicollinearity poses an undesirable effect on the efficiency of the maximum likelihood estimator (MLE) in both Gaussian and non‐Gaussian regression models. The ridge and the Liu estimators have been developed as an alternative to the MLE. Both estimators possess smaller mean squared error (MSE) over the MLE. Recently, Kibria and Lukman developed KL estimator, which was found to outperform the ridge and the Liu estimators in the linear regression model. With this expectation, we developed the KL estimator for the inverse Gaussian regression model. We compare the proposed estimator's performance with some existing estimators in terms of theoretical comparison, the simulation study, and real‐life application. Smaller MSE criterion shows that the proposed estimator with one of its shrinkage parameter performs the best.

[1]  M. Amin,et al.  Two-parameter estimator for the inverse Gaussian regression model , 2020, Commun. Stat. Simul. Comput..

[2]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[3]  Robert L. Mason,et al.  Statistical Design and Analysis of Experiments , 2003 .

[4]  B. M. Golam Kibria,et al.  Journal of Modern Applied Statistical Methods Some Ridge Regression Estimators and Their Performances Some Ridge Regression Estimators and Their Performances , 2022 .

[5]  Ali El Hefnawy,et al.  A Combined Nonlinear Programming Model and Kibria Method for Choosing Ridge Parameter Regression , 2014, Commun. Stat. Simul. Comput..

[6]  Muhammad Amin,et al.  Performance of some new Liu parameters for the linear regression model , 2020, Communications in Statistics - Theory and Methods.

[7]  B. M. Kibria,et al.  Performance of Some New Ridge Regression Estimators , 2003 .

[8]  A MODIFIED TWO-PARAMETER ESTIMATOR IN LINEAR REGRESSION , 2014 .

[9]  G. Ducharme Goodness-of-fit tests for the inverse Gaussian and related distributions , 2001 .

[10]  Amal Saki Malehi,et al.  Statistical models for the analysis of skewed healthcare cost data: a simulation study , 2015, Health Economics Review.

[11]  Z. Algamal,et al.  A new two-parameter estimator for the inverse Gaussian regression model with application in chemometrics , 2019 .

[12]  Z. Algamal Performance of ridge estimator in inverse Gaussian regression model , 2019 .

[13]  B. Segerstedt On ordinary ridge regression in generalized linear models , 1992 .

[14]  Muhammad Amin,et al.  A new Liu-type estimator for the Inverse Gaussian Regression Model , 2020 .

[15]  A. Akbar,et al.  Diagnostics via partial residual plots in inverse Gaussian regression , 2020 .

[16]  Xinfeng Chang,et al.  A New Two-Parameter Estimator in Linear Regression , 2010 .

[17]  A. Lukman,et al.  A Modified New Two-Parameter Estimator in a Linear Regression Model , 2019, Modelling and Simulation in Engineering.

[18]  Selahattin Kaçıranlar,et al.  A new biased estimator based on ridge estimation , 2008 .

[19]  J. Hardin,et al.  Generalized Linear Models and Extensions , 2001 .

[20]  Muhammad Amin,et al.  New shrinkage parameters for the inverse Gaussian Liu regression , 2020, Communications in Statistics - Theory and Methods.

[21]  Efficiency of an almost unbiased two-parameter estimator in linear regression model , 2013 .

[22]  An unbiased estimator with prior information , 2020 .

[23]  Boris Yu. Lemeshko,et al.  Inverse Gaussian Model and Its Applications in Reliability and Survival Analysis , 2010 .

[24]  E. D. Rest,et al.  Statistical Theory and Methodology in Science and Engineering , 1963 .

[25]  Shakeel Ahmad,et al.  Another proposal about the new two-parameter estimator for linear regression model with correlated regressors , 2020, Commun. Stat. Simul. Comput..

[26]  A. Lukman,et al.  Modified ridge‐type estimator to combat multicollinearity: Application to chemical data , 2019, Journal of Chemometrics.

[27]  A. Lukman,et al.  A New Ridge-Type Estimator for the Linear Regression Model: Simulations and Applications , 2020, Scientifica.

[28]  A. Lukman,et al.  Review and classications of the ridge parameter estimation techniques , 2017 .

[29]  Kejian Liu Using Liu-Type Estimator to Combat Collinearity , 2003 .

[30]  Yasin Asar,et al.  New Shrinkage Parameters for the Liu-type Logistic Estimators , 2016, Commun. Stat. Simul. Comput..

[31]  Fikri Akdeniz,et al.  On the almost unbiased generalized liu estimator and unbiased estimation of the bias and mse , 1995 .

[32]  R. Allen,et al.  Statistical Confluence Analysis by means of Complete Regression Systems , 1935 .

[33]  Liu Kejian,et al.  A new class of blased estimate in linear regression , 1993 .