A Kolmogorov-type theorem for stochastic fields

Abstract We generalize the Kolmogorov continuity theorem and prove the continuity of a class of stochastic fields with the parameter. As an application, we derive the continuity of solutions for nonlocal stochastic parabolic equations driven by non-Gaussian Lévy noises.

[1]  Jinqiao Duan,et al.  Schauder estimates for stochastic transport-diffusion equations with Lévy processes , 2017, Journal of Mathematical Analysis and Applications.

[2]  Jan Seidler,et al.  Stochastic Convolutions Driven by Martingales: Maximal Inequalities and Exponential Integrability , 2007 .

[3]  J. Maas,et al.  Poisson stochastic integration in Banach spaces , 2013, 1307.7901.

[4]  Alexander Novikov,et al.  Lévy Processes and Stochastic Calculus , 2005 .

[5]  AN Kolmogorov-Smirnov,et al.  Sulla determinazione empírica di uma legge di distribuzione , 1933 .

[6]  S. Albeverio,et al.  Parabolic SPDEs driven by Poisson white noise , 1998 .

[7]  H. Kuo Introduction to stochastic integration , 2006 .

[8]  Sample-Continuity of Square-Integrable Processes , 1977 .

[9]  Sample path properties of stochastic processes , 1980 .

[10]  Akira Ichikawa,et al.  Some inequalities for martingales and stochastic convolutions , 1986 .

[11]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[12]  P. Kotelenez A stopped Doob inequality for stochastic convolution integrals and stochastic evolution equations , 1984 .

[13]  Carlo Marinelli,et al.  On the maximal inequalities of Burkholder, Davis and Gundy , 2013, 1308.2418.

[14]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[15]  Carlo Marinelli,et al.  Regular dependence on initial data for stochastic evolution equations with multiplicative Poisson noise , 2008, 0808.1509.

[16]  Jiahui Zhu,et al.  Maximal Inequalities and Exponential Estimates for Stochastic Convolutions Driven by Lévy-type Processes in Banach Spaces with Application to Stochastic Quasi-Geostrophic Equations , 2019, SIAM J. Math. Anal..

[17]  Erika Hausenblas,et al.  Maximal regularity for stochastic convolutions driven by Lévy processes , 2009 .

[18]  Kyeong-Hun Kim,et al.  An Lp-theory for stochastic partial differential equations driven by Lévy processes with pseudo-differential operators of arbitrary order , 2016 .

[19]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[20]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[21]  Conditions for Sample-Continuity and the Central Limit Theorem , 1977 .

[22]  Abubakr Gafar Abdalla,et al.  Probability Theory , 2017, Encyclopedia of GIS.

[23]  Anatoli V. Skorokhod,et al.  Limit Theorems for Stochastic Processes with Independent Increments , 1957 .

[24]  David Applebaum,et al.  Lévy Processes and Stochastic Calculus by David Applebaum , 2009 .

[25]  Kyeong-Hun Kim,et al.  An Lp-theory of a class of stochastic equations with the random fractional Laplacian driven by Lévy processes , 2012 .

[26]  N. Chentsov Weak Convergence of Stochastic Processes Whose Trajectories Have No Discontinuities of the Second Kind and the “Heuristic” Approach to the Kolmogorov-Smirnov Tests , 1956 .

[27]  A. Skorokhod Limit Theorems for Stochastic Processes , 1956 .

[28]  Erika Hausenblas Maximal Inequalities of the Itô Integral with Respect to Poisson Random Measures or Lévy Processes on Banach Spaces , 2011 .

[29]  Hongjun Gao,et al.  BMO and Morrey–Campanato estimates for stochastic convolutions and Schauder estimates for stochastic parabolic equations , 2019, Journal of Differential Equations.

[30]  Stopped Doob inequality for p-th moment, 0 , 2001 .