Mechanistic insights into the transformation processes in Z-phase strengthened 12% Cr steels

[1]  D. Urban,et al.  Atomic defects and dopants in ternary Z-phase transition-metal nitrides Cr M N with M =V , Nb, Ta investigated with density functional theory , 2017, 1708.05354.

[2]  Young-Su Lee,et al.  Mechanism for Z-phase formation in 11CrMoVNbN martensitic heat-resistant steel , 2017 .

[3]  F. Liu,et al.  Microstructure and mechanical properties of two Z-phase strengthened 12%Cr martensitic steels: the effects of Cu and C , 2017 .

[4]  Core-Shell Structure of Intermediate Precipitates in a Nb-Based Z-Phase Strengthened 12% Cr Steel , 2017, Microscopy and Microanalysis.

[5]  F. Abe Progress in Creep-Resistant Steels for High Efficiency Coal-Fired Power Plants , 2016 .

[6]  H. Henein,et al.  Characterization of Precipitates in a Microalloyed Steel Using Quantitative X-ray Diffraction , 2016 .

[7]  J. Hald,et al.  A new 12% chromium steel strengthened by Z-phase precipitates , 2016 .

[8]  Vijaya L. Manugula,et al.  A critical assessment of the microstructure and mechanical properties of friction stir welded reduced activation ferritic–martensitic steel , 2016 .

[9]  J. Hald Prospects for Martensitic 12 % Cr Steels for Advanced Steam Power Plants , 2016, Transactions of the Indian Institute of Metals.

[10]  C. Sommitsch,et al.  Optimised microstructure for increased creep rupture strength of MarBN steels , 2015 .

[11]  Wei Yan,et al.  Introduction to Heat-Resistant Steels , 2015 .

[12]  S. Zwaag,et al.  The design of a compositionally robust martensitic creep-resistant steel with an optimized combination of precipitation hardening and solid-solution strengthening for high-temperature use , 2014 .

[13]  R. Forbes,et al.  The Art of Specimen Preparation , 2014 .

[14]  X. Xiao,et al.  Effect of V and Ta on the precipitation behavior of 12%Cr reduced activation ferrite/martensite steel , 2013 .

[15]  R. Thomson,et al.  Microstructural Evolution of Boron Nitride Particles in Advanced 9Cr Power Plant Steels , 2013, Metallurgical and Materials Transactions A.

[16]  H. Andren,et al.  Effects of laser pulsing on analysis of steels by atom probe tomography. , 2011, Ultramicroscopy.

[17]  M. Karadge,et al.  Damage mechanics-based creep model for 9–10%Cr ferritic steels , 2011 .

[18]  L. Tan,et al.  Corrosion behavior of 9-12% Cr ferritic-martensitic steels in supercritical water , 2010 .

[19]  J. Hald,et al.  Conversion of MX nitrides to Z-phase in a martensitic 12% Cr steel , 2010 .

[20]  W. Blum,et al.  Coarsening of precipitates and degradation of creep resistance in tempered martensite steels , 2009 .

[21]  J. Hald,et al.  Tantalum-containing Z-phase in 12%Cr martensitic steels , 2009 .

[22]  J. Hald,et al.  Influence of Z-phase on Long-term Creep Stability of Martensitic 9 to 12 % Cr Steels , 2009 .

[23]  K. Suzuki,et al.  Effect of tempering temperature on Z-phase formation and creep strength in 9Cr–1Mo–V–Nb–N steel , 2008 .

[24]  John Hald,et al.  Microstructure and long-term creep properties of 9–12% Cr steels , 2008 .

[25]  John Hald,et al.  A thermodynamic model of the Z-phase Cr(V, Nb)N , 2007 .

[26]  K. Sawada,et al.  Contribution of Z-Phase Precipitation to Recovery of Martensitic Structure in High Chromium Creep Resistant Steel , 2007 .

[27]  W. Blum,et al.  Evolution of microstructure and deformation resistance in creep of tempered martensitic 9–12%Cr–2%W–5%Co steels , 2006 .

[28]  K. Sawada,et al.  Z-phase Formation during Creep and Aging in 9–12% Cr Heat Resistant Steels , 2006 .

[29]  F. Abe,et al.  BN type inclusions formed in high Cr ferritic heat resistant steel , 2006 .

[30]  D. H. Jack,et al.  Invited review: Carbides and nitrides in steel , 1973 .