Error-resistant Single Qubit Gates with Trapped Ions

This study presents single qubit gates with trapped ions that are robust against experimental imperfections over a wide range of parameters. In particular it is shown that errors caused by an inaccurate setting of either frequency, amplitude, or duration of the driving field, or of a combination of these errors are tolerable when a suitable sequence of radiation pulses, or a shaped pulse is applied instead of, for instance, a single rectangular pi-pulse. Thus an essential prerequisite for scalable quantum computation with trapped ions is demonstrated.

[1]  David G. Cory,et al.  Experimental demonstration of an entanglement swapping operation and improved control in NMR quantum-information processing , 2003 .

[2]  John Preskill,et al.  Quantum accuracy threshold for concatenated distance-3 codes , 2006, Quantum Inf. Comput..

[3]  Timo O. Reiss,et al.  Application of optimal control theory to the design of broadband excitation pulses for high-resolution NMR. , 2003, Journal of magnetic resonance.

[4]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[5]  Christof Wunderlich,et al.  Quantum Measurements and New Concepts for Experiments with Trapped Ions , 2003 .

[6]  N. Khaneja,et al.  Construction of universal rotations from point-to-point transformations. , 2005, Journal of magnetic resonance.

[7]  F. Schmidt-Kaler,et al.  Realization of the Cirac–Zoller controlled-NOT quantum gate , 2003, Nature.

[8]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[9]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[10]  Amr Fahmy,et al.  Approaching five-bit NMR quantum computing , 2000 .

[11]  F. Mintert,et al.  Ion-trap quantum logic using long-wavelength radiation. , 2001, Physical review letters.

[12]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[13]  Burkhard Luy,et al.  Optimal control design of constant amplitude phase-modulated pulses: application to calibration-free broadband excitation. , 2006, Journal of magnetic resonance.

[14]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[15]  J. A. Jones,et al.  Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer , 1998, quant-ph/9801027.

[16]  P. C. Haljan,et al.  Entanglement of trapped-ion clock states , 2005 .

[17]  J. Twamley,et al.  Quantum computer using a trapped-ion spin molecule and microwave radiation , 2003, quant-ph/0310015.

[18]  J. A. Jones,et al.  Tackling systematic errors in quantum logic gates with composite rotations , 2003 .

[19]  A. Braun,et al.  Electrodynamically trapped Yb + ions for quantum information processing , 2006 .

[20]  O. Gühne,et al.  03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .

[21]  R. B. Blakestad,et al.  Creation of a six-atom ‘Schrödinger cat’ state , 2005, Nature.

[22]  Burkhard Luy,et al.  Exploring the limits of broadband excitation and inversion pulses. , 2004, Journal of magnetic resonance.

[23]  J. P. Home,et al.  Deterministic entanglement and tomography of ion-spin qubits , 2006 .