Hydrolysis of milk-derived bioactive peptides by cell-associated extracellular peptidases of Streptococcus thermophilus

[1]  A. Turner Aminopeptidase N , 2012, Handbook of Proteolytic Enzymes.

[2]  L. Miclo,et al.  Release of the cell-envelope protease PrtS in the growth medium of Streptococcus thermophilus 4F44 , 2012 .

[3]  L. Miclo,et al.  Variability of hydrolysis of β-, αs1-, and αs2-caseins by 10 strains of Streptococcus thermophilus and resulting bioactive peptides. , 2012, Journal of agricultural and food chemistry.

[4]  P. Horvath,et al.  The fast milk acidifying phenotype of Streptococcus thermophilus can be acquired by natural transformation of the genomic island encoding the cell-envelope proteinase PrtS , 2011, Microbial cell factories.

[5]  L. Miclo,et al.  In vitro digestibility of α-casozepine, a benzodiazepine-like peptide from bovine casein, and biological activity of its main proteolytic fragment. , 2011, Journal of agricultural and food chemistry.

[6]  P. Horvath,et al.  Development of a Versatile Procedure Based on Natural Transformation for Marker-Free Targeted Genetic Modification in Streptococcus thermophilus , 2010, Applied and Environmental Microbiology.

[7]  G. A. Somkuti,et al.  Enzymatic fragmentation of the antimicrobial peptides casocidin and isracidin by Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus , 2010, Applied Microbiology and Biotechnology.

[8]  G. A. Somkuti,et al.  Hydrolytic breakdown of lactoferricin by lactic acid bacteria , 2010, Journal of Industrial Microbiology & Biotechnology.

[9]  R. Siezen,et al.  The proteolytic system of lactic acid bacteria revisited: a genomic comparison , 2010, BMC Genomics.

[10]  P. Renault,et al.  Emergence of a Cell Wall Protease in the Streptococcus thermophilus Population , 2009, Applied and Environmental Microbiology.

[11]  M Paul,et al.  Degradation of milk‐based bioactive peptides by yogurt fermentation bacteria * , 2009, Letters in applied microbiology.

[12]  L. Day,et al.  Incorporation of functional ingredients into foods , 2009 .

[13]  R. Gardan,et al.  The Oligopeptide Transport System Is Essential for the Development of Natural Competence in Streptococcus thermophilus Strain LMD-9 , 2009, Journal of bacteriology.

[14]  A. Dary,et al.  Variability and molecular typing of Streptococcus thermophilus strains displaying different proteolytic and acidifying properties , 2009 .

[15]  Eric Johansen,et al.  Streptococcus thermophilus Core Genome: Comparative Genome Hybridization Study of 47 Strains , 2008, Applied and Environmental Microbiology.

[16]  Katherine H. Huang,et al.  Comparative genomics of the lactic acid bacteria , 2006, Proceedings of the National Academy of Sciences.

[17]  L. Håvarstein,et al.  Natural Genetic Transformation: a Novel Tool for Efficient Genetic Engineering of the Dairy Bacterium Streptococcus thermophilus , 2006, Applied and Environmental Microbiology.

[18]  Hannu Korhonen,et al.  Bioactive peptides: Production and functionality , 2006 .

[19]  L. Miclo,et al.  Determination of the phosphorylation level and deamidation susceptibility of equine β‐casein , 2006, Proteomics.

[20]  R. Fitzgerald,et al.  Bioactive peptides and lactic fermentations , 2006 .

[21]  H. Ingmer,et al.  Proteolytic systems of lactic acid bacteria , 2006, Applied Microbiology and Biotechnology.

[22]  A. Goffeau,et al.  Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus , 2004, Nature Biotechnology.

[23]  D. Grenier,et al.  Identification and characterization of four proteases produced by Streptococcus suis. , 2003, FEMS microbiology letters.

[24]  L. Miclo,et al.  Angiotensin‐I‐converting enzyme inhibitory peptides from tryptic hydrolysate of bovine αS2‐casein , 2002 .

[25]  V. Monnet,et al.  Cell-wall proteinases PrtS and PrtB have a different role in Streptococcus thermophilus/Lactobacillus bulgaricus mixed cultures in milk. , 2002, Microbiology.

[26]  T. Kordula,et al.  Extracellular Arginine Aminopeptidase from Streptococcus gordonii FSS2 , 2002, Infection and Immunity.

[27]  V. Monnet,et al.  Three Oligopeptide-binding Proteins Are Involved in the Oligopeptide Transport of Streptococcus thermophilus * , 2002, The Journal of Biological Chemistry.

[28]  V. Juillard,et al.  Development of a minimal chemically‐defined medium for the exponential growth of Streptococcus thermophilus , 2001, Journal of applied microbiology.

[29]  T. Sekizaki,et al.  Thermosensitive suicide vectors for gene replacement in Streptococcus suis. , 2001, Plasmid.

[30]  L. Miclo,et al.  Characterization of α‐casozepine, a tryptic peptide from bovine αs1‐casein with benzodiazepine‐like activity , 2001 .

[31]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[32]  S. Deutsch,et al.  Hydrolysis of Sequenced β-Casein Peptides Provides New Insight into Peptidase Activity from Thermophilic Lactic Acid Bacteria and Highlights Intrinsic Resistance of Phosphopeptides , 2000, Applied and Environmental Microbiology.

[33]  V. Monnet,et al.  Streptococcus thermophilus Cell Wall-Anchored Proteinase: Release, Purification, and Biochemical and Genetic Characterization , 2000, Applied and Environmental Microbiology.

[34]  A. Bolotin,et al.  HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing , 2000, Molecular microbiology.

[35]  R. Anastasiou,et al.  Purification and characterisation of an intracellular X-prolyl-dipeptidyl aminopeptidase from Streptococcus thermophilus ACA-DC 4. , 1998, Journal of biotechnology.

[36]  P. Leblond,et al.  Occurrence of deletions, associated with genetic instability in Streptomyces ambofaciens, is independent of the linearity of the chromosomal DNA , 1997, Journal of bacteriology.

[37]  V. Monnet,et al.  Presence of additional peptidases in Streptococcus thermophilus CNRZ 302 compared to Lactococcus lactis , 1997, Journal of applied microbiology.

[38]  N. Yamamoto,et al.  Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk. , 1995, Journal of dairy science.

[39]  V. Monnet,et al.  Purification and characterization of a general aminopeptidase (St-PepN) from Streptococcus salivarius ssp. thermophilus CNRZ 302. , 1994, Journal of dairy science.

[40]  G. G. Pritchard,et al.  Aminopeptidase N from Streptococcus salivarius subsp. thermophilus NCDO 573: purification and properties. , 1994, The Journal of applied bacteriology.

[41]  D. Atlan,et al.  Two cell-wall-associated aminopeptidases from Lactobacillus helveticus and the purification and characterization of APII from strain ITGL1. , 1993, Journal of general microbiology.

[42]  P. Renault,et al.  Characterization of a Cell Envelope-Associated Proteinase Activity from Streptococcus thermophilus H-Strains , 1993, Applied and environmental microbiology.

[43]  E. Tsakalidou,et al.  Purification and partial characterization of an intracellular aminopeptidase from Streptococcus salivarius subsp. thermophilus strain ACA-DC 114. , 1992, The Journal of applied bacteriology.

[44]  R. Cowman,et al.  Studies on the subcellular localization of protease and arylaminopeptidase activities in Streptococcus sanguis ATCC 10556. , 1991, Journal of dental research.

[45]  W. Bockelmann,et al.  Purification of an X-prolyl-dipeptidyl aminopeptidase from the cell wall proteolytic system of Lactococcus lactis subsp. cremoris , 1989, Applied Microbiology and Biotechnology.

[46]  P. Jollès,et al.  Casein, a prohormone with an immunomodulating role for the newborn? , 1988, Experientia.

[47]  J. Meyer,et al.  Purification and characterization of X-prolyl-dipeptidyl-aminopeptidase from Lactobacillus lactis and from Streptococcus thermophilus. , 1987, Journal of dairy science.

[48]  W. Bockelmann,et al.  Simultaneous extraction and purification of a cell wall-associated peptidase and β-casein specific proteas fromStreptococcus cremoris AC1 , 1985, Applied Microbiology and Biotechnology.

[49]  W. Klee,et al.  Opioid activities and structures of alpha-casein-derived exorphins. , 1983, Biochemistry.

[50]  M. Bachmann,et al.  Purification and Partial Characterization of an Aminopeptidase from Lactobacillus lactis , 1980, Applied and environmental microbiology.

[51]  .. H. Pierce,et al.  Improved Medium for Lactic Streptococci and Their Bacteriophages , 1975, Applied microbiology.

[52]  Z. Bhat,et al.  Milk and Dairy Products as Functional Foods: A Review , 2011 .

[53]  of Streptococcus , 2005 .

[54]  J. Steele,et al.  Peptidases and amino acid catabolism in lactic acid bacteria , 2004, Antonie van Leeuwenhoek.

[55]  L. Miclo,et al.  Characterization of alpha-casozepine, a tryptic peptide from bovine alpha(s1)-casein with benzodiazepine-like activity. , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[56]  Nagendra P. Shah,et al.  Proteolytic profiles of yogurt and probiotic bacteria , 2000 .

[57]  P. McSweeney,et al.  PepN-like aminopeptidase from Lactohacillus curvatus DPC2024: purification and characterization , 1999 .

[58]  O. Mills,et al.  Nitrogen sources for growth of lactic streptococci in milk , 1981 .

[59]  F. Lottspeich,et al.  Novel opioid peptides derived from casein (beta-casomorphins). I. Isolation from bovine casein peptone. , 1979, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.

[60]  N. Angelo,et al.  Purificationa and properties of a fructose-1,6-diphosphate-activated lactate dehydrogenase from Streptococcus faecalis. , 1970, Journal of bacteriology.